

INDRA at GSI

November 1997 – April 1999

INDRA at **GSI**

Systems:

Au + Au 40 to 150 AMeV Xe + Sn 50 to 250 AMeV C + Au 95 to 1800 AMeV

Ring 1

Pârlog parameterization

Motivation

From the Fermi to the relativistic domain

Invariant cross sections for Au + Au at peripheral impact parameters

Part I:

Peripheral Au + Au

Z = 3 at 100 A MeV

Transverse velocity spectra

J. Łukasik et al., Phys. Rev. C 66, 064606 (2002) Contributions to transverse energies

at midrapidity

N-N scattering is too much

Fermi motion is not enough

Compensation due to Coulomb

Extended Goldhaber model

in 3 steps

J. Łukasik et al., Phys. Lett. B 566 (2003) 76

Model results

model

Comparison

Quantitative description of data

Transverse energy spectra

2 hard scattered 1 nucleons 0

Quantitative description of data

Transverse energy spectra

Atomic number Z spectra

Conclusions/Questions Part I

- 1) Dynamical processes at mid-rapidity !
- 2) Clustering/coalescence seems to be a very general principle !
- 3) Successful modeling with advanced transport codes !
- 4) Identification of equilibrated target/projectile residues ?

Part II:

0.4 γβ 0.2 0 -0.2 -0.4 0.5 0 y

Central Au + Au

Z = 3 at 100 A MeV

Part II:

Central Au + Au

Z = 3 at 100 A MeV

peripheral

Part II:

Central Au + Au

Z = 3 at 100 A MeV

central

9

from MMMC model description with deformed source (0.7:1)and with decoupled radial flow

A. Le Fèvre et al., nucl-ex/0309016

E_{coll}

 E_0/A (MeV)

from MMMC model description with deformed source (0.7:1) and with decoupled radial flow

A. Le Fèvre et al., nucl-ex/0309016

Questions

1) Why does the SMM or MMMC work so well in a dynamical situation ?

2) Deformation as a dynamical constraint ?

3) Nature of the collective motion ?

work in progress J. Łukasik et al.

Au + Au, Z = 2, midcentral, scaled variables

Directed flow

Various slices

elliptic flow

BIN @ Z = 3-6

Tens. 1/frag.

H.H. Gutbrod et al. PRC 42(1990)

E/A -->

Усм

($\textbf{x}\equiv\gamma\,\beta_{\perp}$ $\textbf{y}\equiv th^{-1}\beta_{||}$)

Усм

 $\mathbf{x}_{||}$

Squeeze-out: Ψ distributions

Z = 2

$$v_2 = \langle \cos 2\Psi \rangle$$

Squeeze-out balance

Z = 2

Squeeze-out: excitation function

A. Andronic

Summary

1) <u>Peripheral</u>:

Good description with extended Goldhaber model (clustering criterion!).

2) <u>Central</u>:

Good description with deformed statistical source and decoupled radial flow; directed and elliptic flow in progress.

3) New results also for Xe + Sn and C + Au.

the end

J. Łukasik,^{1,10} S. Hudan,² F. Lavaud,³ K. Turzó,¹ G. Auger,² Ch.O. Bacri,³ M.L. Begemann-Blaich,¹ N. Bellaize,⁴ R. Bittiger,¹ F. Bocage,⁴ B. Borderie,³ R. Bougault,⁴ B. Bouriquet,² Ph. Buchet,⁵ J.L. Charvet,⁵ A. Chbihi,² R. Dayras,⁵ D. Doré,⁵ D. Durand,⁴ J.D. Frankland,² E. Galichet,⁶ D. Gourio,¹ D. Guinet,⁶ B. Hurst,⁴ P. Lautesse,⁶ J.L. Laville,² C. Leduc,⁶ A. Le Fèvre,¹ R. Legrain,⁵ O. Lopez,⁴ U. Lvnen,¹ W.F.J. Müller,¹ L. Nalpas,⁵ H. Orth,¹ E. Plagnol,³ E. Rosato,⁷ A. Saija,⁸ C. Sfienti,¹ C. Schwarz,¹ J.C. Steckmeyer,⁴ G. Tăbăcaru,² B. Tamain,⁴ W. Trautmann,¹ A. Trzciński,⁹ E. Vient,⁴ M. Vigilante,⁷ C. Volant,⁵ B. Zwiegliński,⁹ and A.S. Botvina^{1,11} (The INDRA and ALADIN Collaborations) ¹Gesellschaft für Schwerionenforschung mbH. D-64291 Darmstadt. Germany ²GANIL, CEA et IN2P3-CNRS, F-14076 Caen, France ³Institut de Physique Nucléaire, IN2P3-CNRS et Université, F-91406 Orsay, France ⁴LPC, IN2P3-CNRS, ISMRA et Université, F-14050 Caen, France ⁵DAPNIA/SPhN, CEA/Saclay, F-91191 Gif sur Yvette, France ⁶Institut de Physique Nucléaire. IN2P3-CNRS et Université. F-69622 Villeurbanne. France ⁷Dipartimento di Scienze Fisiche e Sezione INFN, Univ. Federico II, I-80126 Napoli, Italy ⁸Dipartimento di Fisica dell' Università and INFN, I-95129 Catania, Italy ⁹A. Soltan Institute for Nuclear Studies. Pl-00681 Warsaw. Poland ¹⁰H. Niewodniczański Institute of Nuclear Physics. Pl-31342 Kraków. Poland ¹¹Institute for Nuclear Research, 117312 Moscow, Russia