New results on multifragmentation and the SMM

Wolfgang Trautmann GSI Darmstadt

09.10.2003

FOR JAKOB 1993

ALADIN data

J. Hubele et al. PRC 46, 1577 (1992)

rise and fall of multifragment emission

SMM interpretation

H.W. Barz, W. Bauer, J.P. Bondorf,A.S. Botvina, R. Donangelo,H. Schulz, K. Sneppen,NPA 561 (1993) 466

excitation energy adjusted !

universal partitioning !

- I. Was this the final word?
- 1. Widths and N/Z
- 2. Backtracing
- 3. Temperatures

Widths and N/Z

A.S. Botvina et al. NPA 584 (1995) 737

... by reconstructing the ensemble of thermalized nuclear systems

Backtracing

P. Désesquelles,J.P. Bondorf,I.N. Mishustin,A.S. Botvina,NPA 604 (1996) 183

... not with kinetic energies !

Kinetic energies and Fermi motion

T. Odeh et al. PRL 84. 4557 (2000)

Au + Au at 1000 A MeV

 $T\approx 17~MeV$ inconsistent with thermal equilibrium can be explained with Fermi motion (Goldhaber)

II. More recent developments

- 1. Isotopic scaling and the symmetry term
- 2. Kinetic energies and Fermi motion
- 3. Flow and equilibrium

INDRA@GSI

Peripheral Au + Au

Z = 3 at 100 A MeV

Au + Au

Invariant cross sections at peripheral impact parameters

From the Fermi to the relativistic domain

Transverse velocity spectra

J. Lukasik et al. Phys. Rev. C 66, 064606 (2002)

Contributions to transverse energies

at midrapidity

Fermi motion is not enough

N-N scattering is too much

Compensation due to Coulomb

in 3 steps

J. Lukasik et al. PLB 566 (2003) 76

Model results

Quantitative description of data

Transverse energy spectra

- 2 hard scattered
 - nucleons

-- 0

1

Quantitative description of data

Transverse energy spectra

Atomic number Z spectra

Questions

- 1. Where is the equilibrated neck?
- 2. Where is the equilibrated target/projectile residue ?
- 3. Clustering criterion on a nucleon distribution seems to be a general principle !

INDRA@GSI

Central Au + Au

Z = 3 at 100 A MeV

Flow and fragmentation

from MMMC model description with deformed source (0.7:1) and with decoupled flow

A. Le Fèvre et al. nucl-ex/0309016

Flow and fragmentation

 \mathbf{E}^*

E_{coll}

70

80

90

100

E₀/A (MeV)

9

8

7

5

3

2

50

60

E/A (MeV)

from MMMC model description with deformed source (0.7:1) and with decoupled flow

A. Le Fèvre et al. nucl-ex/0309016

Questions

- 1. Why does the SMM or MMMC work so well in a dynamical situation ?
- 2. Deformation as a dynamical constraint !
- 3. Radial flow should be another constraint ! Implicitly contained in parameters ?

Alternatively: early fragment formation, see Danielewicz and Pan, Dorso and Aichelin, Barz et al., X. Campi et al., Phys. Rev. C 67, 044610 (2003) Flow and fragmentation

X. Campi et al., Phys. Rev. C 67, 044610 (2003)

... shape of these distributions is characteristic of the presence of Coulomb forces and close to what is observed ...

"LITTLE BIG BANG" SCENARIO OF MULTIFRAGMENTATION

the end

J. Lukasik,^{1,10} S. Hudan,² F. Lavaud,³ K. Turzó,¹ G. Auger,² Ch.O. Bacri,³ M.L. Begemann-Blaich,¹ N. Bellaize,⁴ R. Bittiger,¹ F. Bocage,⁴ B. Borderie,³ R. Bougault,⁴ B. Bouriquet,² Ph. Buchet,⁵ J.L. Charvet,⁵ A. Chbihi,²
R. Dayras,⁵ D. Doré,⁵ D. Durand,⁴ J.D. Frankland,² E. Galichet,⁶ D. Gourio,¹ D. Guinet,⁶ B. Hurst,⁴ P. Lautesse,⁶ J.L. Laville,² C. Leduc,⁶ A. Le Fèvre,¹ R. Legrain,⁵ O. Lopez,⁴ U. Lynen,¹ W.F.J. Müller,¹ L. Nalpas,⁵ H. Orth,¹ E. Plagnol,³ E. Rosato,⁷ A. Saija,⁸ C. Sfienti,¹ C. Schwarz,¹ J.C. Steckmeyer,⁴ G. Tăbăcaru,² B. Tamain,⁴ W. Trautmann,¹ A. Trzciński,⁹ E. Vient,⁴ M. Vigilante,⁷ C. Volant,⁵ B. Zwiegliński,⁹ and A.S. Botvina^{1, 11} (The INDRA and ALADIN Collaborations)
¹Gesellschaft für Schwerionenforschung mbH, D-64291 Darmstadt, Germany
²GANIL, CEA et IN2P3-CNRS, F-14076 Caen, France
³Institut de Physique Nucléaire, IN2P3-CNRS et Université, F-91406 Orsay, France

⁴LPC, IN2P3-CNRS, ISMRA et Université, F-14050 Caen, France ⁵DAPNIA/SPhN, CEA/Saclay, F-91191 Gif sur Yvette, France

⁶Institut de Physique Nucléaire, IN2P3-CNRS et Université, F-69622 Villeurbanne, France

⁷Dipartimento di Scienze Fisiche e Sezione INFN, Univ. Federico II, I-80126 Napoli, Italy

⁸Dipartimento di Fisica dell' Università and INFN, I-95129 Catania, Italy

⁹A. Soltan Institute for Nuclear Studies, Pl-00681 Warsaw, Poland

¹⁰H. Niewodniczański Institute of Nuclear Physics, Pl-31342 Kraków, Poland

¹¹Institute for Nuclear Research, 117312 Moscow, Russia