

INDRA at GSI

November 1997 – April 1999

Z=3 Au + Au 80 AMeV very peripheral

INDRA at GSI

Systems: Au + Au 40 to 150 AMeV Xe + Sn = 50 to 250 AMeV C + Au 95 to 1800 AMeV

Identification

Ring 1

Pârlog parameterization

Au + Au

Z = 3 at 100 A MeV

Peripheral

Rapidity distributions

Z = 3 at 80 A MeV

Transverse velocity spectra

J. Łukasik et al., Phys. Rev. C 66, 064606 (2002)

Contributions to transverse energies

at midrapidity

Fermi motion is not enough

N-N scattering is too much

Compensation due to Coulomb

Extended Goldhaber model

in 3 steps

J. Łukasik et al., Phys. Lett. B 566 (2003) 76

Model results

Quantitative description of data

Transverse energy spectra

- hard scattered
 - nucleons

----- 0

Quantitative description of data

Transverse energy spectra

Atomic number Z spectra

Questions/Conclusions

- 1) Where is the equilibrated neck?
- 2) Where is the equilibrated target/projectile residue ?
- 3) Clustering/coalescence seems to be a very general principle !

see also Gaitanos et al., Odeh et al., Gadioli et al. and others

Part II:

C + Au

Evaporation overestimated by standard models

Deuterons and Tritons

Pions with INDRA

Etalons Si(Li) 2mm / CsI(Tl) Ring 13

Liège Intranuclear Cascade

Fragment multiplicities

Multiplicity correlations

$$1 + R = \frac{\langle M_{\pi} \cdot M_{\rm IMF} \rangle}{\langle M_{\pi} \rangle \cdot \langle M_{\rm IMF} \rangle}$$

slow pions E<30 MeV fast protons E>150 MeV

Multiplicities vs. impact parameter

● 1800
□ 1000
△ 600
▼ 300

Impact parameter binning

Impact parameter binning

Some conclusions

 <u>Peripheral Au+Au</u>: Good description with extended Goldhaber model (clustering criterion!).

2) <u>Protons in C+Au</u>:

Need fragmentation models to describe evaporation peak.

3) <u>Pions in C+Au</u>:

Strong rescattering and weak direct multiplicity correlations.

the end

J. Lukasik,^{1,10} S. Hudan,² F. Lavaud,³ K. Turzó,¹ G. Auger,² Ch.O. Bacri,³ M.L. Begemann-Blaich,¹ N. Bellaize,⁴ R. Bittiger,¹ F. Bocage,⁴ B. Borderie,³ R. Bougault,⁴ B. Bouriquet,² Ph. Buchet,⁵ J.L. Charvet,⁵ A. Chbihi,² R. Dayras,⁵ D. Doré,⁵ D. Durand,⁴ J.D. Frankland,² E. Galichet,⁶ D. Gourio,¹ D. Guinet,⁶ B. Hurst,⁴ P. Lautesse,⁶ J.L. Laville,² C. Leduc,⁶ A. Le Fèvre,¹ R. Legrain,⁵ O. Lopez,⁴ U. Lynen,¹ W.F.J. Müller,¹ L. Nalpas,⁵ H. Orth,¹ E. Plagnol,³ E. Rosato,⁷ A. Saija,⁸ C. Sfienti,¹ C. Schwarz,¹ J.C. Steckmeyer,⁴ G. Tăbăcaru,² B. Tamain,⁴ W. Trautmann,¹ A. Trzciński,⁹ E. Vient,⁴ M. Vigilante,⁷ C. Volant,⁵ B. Zwiegliński,⁹ and A.S. Botvina^{1, 11} (The INDRA and ALADIN Collaborations)
¹Gesellschaft für Schwerionenforschung mbH, D-64291 Darmstadt, Germany
²GANIL, CEA et IN2P3-CNRS, F-14076 Caen, France
³Institut de Physique Nucléaire, IN2P3-CNRS et Université, F-91406 Orsay, France

⁵DAPNIA/SPhN, CEA/Saclay, F-91191 Gif sur Yvette, France

⁶Institut de Physique Nucléaire, IN2P3-CNRS et Université, F-69622 Villeurbanne, France

⁷Dipartimento di Scienze Fisiche e Sezione INFN, Univ. Federico II, I-80126 Napoli, Italy

⁸Dipartimento di Fisica dell' Università and INFN, I-95129 Catania, Italy

⁹A. Soltan Institute for Nuclear Studies, Pl-00681 Warsaw, Poland

¹⁰H. Niewodniczański Institute of Nuclear Physics, Pl-31342 Kraków, Poland

¹¹Institute for Nuclear Research, 117312 Moscow, Russia