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Abstract--Two-point charge division is a typical technique for
position measurements in linear multi-electrode detectors
(microstrips, multi-wire proportional counters, silicon drift-
detector arrays, scintillators coupled to photodetectors). Only
two preamplifiers, located at the right and the left ends of the
detection array, are used, each of which receives a fraction of the
charge produced by the ionizing event. Position is reconstructed
comparing these charge fractions. In principle either a resistive
or a capacitive divider may be used to split the charge. The
choice between such two different setups is not obvious. In fact
each of them shows advantages and disadvantages in terms of
noise, signal propagation, linearity. In this paper we present a
unified treatment for the capacitive and the resistive mechanisms
of charge division which addresses the issues of this choice. As an
example the realistic setup of the multi-wire position-sensitive
proportional counter to be used in the TP-MUSIC III chamber
of the ALADiN experiment at GSI is considered.

I. INTRODUCTION

wo-point charge splitting is a measurement technique
aimed at identifying the position of an ionizing event in

linear multi-electrode detectors (Microstrips, Multi-Wire
Proportional Counters (MWPC), Silicon Drift-Detector
Arrays, Scintillators coupled to Segmented Photodetectors)
[1], [2]. Rather than using an electronic channel per electrode,
it makes use of only two "virtual-earth preamplifiers" with
their virtual earths connected to the right and the left ends of
the electrode array. Each preamplifier receives a fraction of
the total charge produced by the event. The relative position x
of the event along the array depends on these charge
fractions, or :

χ = 
x
xT

 = 
QR

QR+QL
(1)

where xT is the total length of the array, QR is the charge
collected at the right end point, QL is the charge collected at
the left end point and the total charge QR+QL is used as a
normalization factor. Both, either a resistive or a capacitive
divider may be used to split the charge into fractions QL and
QR, as is shown in the examples of Fig. 1. Each of these
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setups shows advantages and disadvantages in terms of noise,
signal propagation, linearity, which depend on the constraints
dictated by the detection system (capacitance and number of
electrodes, required processing time, necessity of decoupling
capacitors). In this paper a unified treatment for the capacitive
and resistive mechanisms of the charge division is presented.
The signal shape as well as the obtainable position resolution
are derived vs. a suitable pattern of detector-processor
parameters. It is found that the capacitive charge-division
yields a higher resolution unless very short processing times
are required. As an example the physical parameters of the
MWPC of the TP-MUSIC III chamber installed at GSI are
considered. This MWPC consists of a plane of anode wires
(diameter=20 µm, 5 mm spacing) shielded from the detector
volume by a Frisch grid located 5 mm far away. The  Frisch
grid acts as a gate that can be 'closed' when necessary, so as to
prevent the slow positive ions produced in the multiplication
volume from back scattering into the detector volume. The
electrons traverse the region between the Frisch grid and the
anode wires in 80-100 ns. The maximum time width of the

Fig. 1. Charge division in (a) a multi wire proportional counter and (b) a
matrix of photodetectors coupled to a scintillator.
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charge cloud trespassing the Frisch grid, caused by thermal
diffusion and/or by inclined trajectories of the primary
ionizing particles, ranges between 20 to 150 ns, which sets a
minimum for the processing time at about 200 ns. The
shortest processing time is required in this application to
maximize the resolving time in case of double or multiple hits
in the detector volume.

An entirely different approach is based on terminating
both ends of the charge-splitting  line into the line
characteristic impedance and use propagation times to derive
the position. However such an approach is beyond the scopes
of this paper

II. SIGNAL PROPAGATION AND NONLINEARITIES

An electrical model of the charge-division line is shown in
Fig. 2, where the electrode capacitances are drawn in dashed
line. Signal is modeled as a short current pulse Qg(t) where Q
is the collected charge and g(t) is a unit-area shape factor
depending on the charge-collection mechanism. Decoupling
capacitors Cd are also shown, while the high-value resistors
used to bias the detector have been neglected. We want to
calculate the current flowing into the virtual earths of the two
far-end amplifiers as a function of the position of firing
electrode. To do this let us model the network as the cascade
of identical, symmetrical π-type cells of the type of those of
Fig. 3, connected as shown in Fig. 4. Impedances ZT

terminating the line at both ends model the decoupling
capacitors and the virtual earths. Virtual earths act as
electronically cooled damping resistors [1], typically a few
tens of ohms. These low-value resistors can be neglected in
first approximation. Cw is the capacitance of the electrodes, R
or C are the charge-splitting devices. Z0 is the characteristic
impedance of the cell, or the impedance seen at the input of a
semi-infinite line (ℜ) of identical cells [3]. Parameter k is the
so-called transduction exponent of the cell, defined as the
natural logarithm of the input-to-output voltage ratio of each
cell of such a line (ℜ) [3]. It can be shown that any symmetric
cell is fully characterized by parameters Z0 and k. After some
calculations, shown in Appendices I.A and I.B, we derive
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for cells of Fig. 3(a) (first row of (2)) and (b) (second row of

(2)). s is the independent variable in the Laplace domain. In
Fig. 4 Z1 and Z2 are the impedances seen at the right/left side
of the firing electrode.  As is shown in Appendix I.C
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where i=1,2. n1 and n2 are the cells located at the right /left
side of the firing electrode. The signal current I0 is split by
current divider Z1-Z2, and flows thereafter through the line
towards the far-end amplifiers. By using the current divider
formula and Eq. (39) of Appendix I.C it is found that
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where indices 1 and 2 can be swapped and n = n1+ n2. If no

Fig. 2. Two-point measurement by means of (a) resistive divider (the stray
capacitances in parallel to resistors R are neglected), (b) capacitive divider.
The resistors R or capacitances C connect all detection elements to each
other. Each detection element has a capacitive impedance to ground
(capacitances in dashed line). The current signal delivered by the detector is
Qg(t) where Q is the charge, unit-area function g(t) models the charge-
collection mechanism. Decoupling capacitances Cd are also shown.

Fig. 3. Elementary cells by which the charge-division line may be modeled.
Cw is the electrode (wire) capacitance. Elementary device for charge division
is (a) a resistor R or (b) a capacitance C.

Fig. 4. Equivalent circuit of a charge-splitting line. Any cell models the charge-division element (a resistor or a capacitor) and the electrode impedance. The
line is terminated into virtual earths of far-end amplifiers through coupling capacitors as modeled by impedances ZT.



coupling capacitor is used Z T vanishes and (3) and (4)
become much simpler, namely

knZZ ii tanh0= , (5)
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Equations (4) and (6) show in the Laplace domain the
propagation of the current signal from the firing electrode to
the right-end amplifier. (4) and (6) hold namely when the line
is terminated into the amplifier virtual earth through
impedance Z n or a short-circuit connection. Approximating
g(t) as a delta-like impulse, I0 becomes the Laplace transform
of function Qδ(t), or I0=L(Qδ(t))=Q. Inverse Laplace
transform of (4) or (6) yields the current flowing into the
amplifier virtual earth, which is clearly a function of n2, or the
position of the firing electrode.

A. Resistive divider

For the case of a resistive divider the first row of (2) holds.
We search the time-domain counterparts of (4) and of (6)
with ZT=1/sCd and I0=L(Qδ(t))=Q. To this purpose it is
necessary to calculate the roots of the denominator of (4) and
(6), or the poles of the network. After some calculations it
turns out that the denominator of (4) may be rewritten as
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where τd = RCd, τ w= RCw. Apparently this polynomial is the
sum of two polynomials, each with n known real roots, and
has therefore n roots. Furthermore the roots of the overall
polynomial are distinct and can be easily derived numerically.
Similarly, the denominator of (6) may be rewritten as
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which apparently has n-1 distinct real roots. Whenever all
poles are distinct, the inverse Laplace transform can be
calculated using the well-known relationship:
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where L-1 is inverse Laplace transform, αr is the r-th root of
D(s), the prime stands for derivative vs. s, t is time. We can
use (9) to translate (4) (with ZT=1/sCd) in the time domain,
being αr the roots of (7). Similarly we can switch (6) in the
time domain, obtaining, in this case exactly,
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Eq. (10) gives explicitly the current flowing into the virtual
earth of far-end amplifier, when no decoupling capacitors are
used, as a function of the position (dictated by n2) of firing
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Fig. 5. Charge signal reaching one far-end amplifier in a proportional
counter with 20 wires. Index h is position of the firing wire, in ascending
order as the electrode gets further from the amplifier. Rtot=1.8kΩ, or R=90Ω.
Cw=4.5pF. No decoupling capacitors are used. The waveforms stabilize after
100 ns.
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Fig. 6. Same as in Fig. 5 (20 electrodes, R=90Ω. Cw=4.5pF) but with
decoupling capacitors of 2.2nF. Note the effect of decoupling capacitors: the
waveforms never reach stable values.
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Fig. 7. Same as in Fig. 6, but on an expanded time scale. It can be seen that
the waveforms decay exponentially converging to a common final level of
about one half of the total collected charge Q (waveforms are normalized to
Q in the figure). The time constant is dictated by the overall resistance of the
divider and the series of the two decoupling capacitances, or 1.8 kΩ
×1.1 nF = 2 µs.



electrode. In Figs. 5-7 the integral of in1(t), or the transmitted
charge, is shown as normalized to the total collected charge Q
for realistic values of the parameters. Note the effect of the
decoupling capacitances in Figs. 6 and 7: the waveforms
converge to a common final value of about one half of the
total collected charge. This is rather intuitive: the collected
charge cannot be eventually transmitted out of the resistor
chain due to the decoupling capacitances which act as a
barrier at low frequency. The charge will rather get
redistributed on the large-value decoupling capacitors. This
yields ½Q on each of the decoupling capacitances (assuming
them equal to each other). It is worth pointing out that such a
charge will be drained away in the long term by the high-
value resistors used to bias the electrodes. Figs. 6 and 7 show
clearly that if decoupling capacitors are used linearity will
eventually depend on the shaping time constant. To address
this problem sufficiently large decoupling capacitances are to
be used, in such a way that the time constant of the charge
redistribution process, or

( )d2
1 C)R(n (11)

is greater than the used shaping time. Alternatively a
differentiator followed by a baseline restorer could be used to
clip the slow tail caused by the decoupling capacitors.

The principal advantage of a resistive divider is a good
linearity of the fraction (1) vs. position relationship. In fact at
low frequency the electrode capacitances Cw behave as open-
circuit connections and linearity is only limited by the
accuracy of the divider resistors. This can be seen in Fig. 5:
after ~100 ns linearly-distributed saturation values are
reached. From a mathematical standpoint this can be seen in
(6) where I0=Q. If s vanishes, which corresponds to pushing t
to infinity, then k→0 in (2), and (6) converges exactly to

n

n2 Q. However capacitances Cw along with resistors R

introduce phase shifts at high frequencies along the signal
path, which yield a transient (noticeable for t<50 ns) and
propagation delays (noticeable for t<15 ns) which get larger
as the firing wire is further from the amplifier. To minimize

such effects the resistor values should be chosen relatively
low (90Ω in the shown examples).  An empirical rule to
determine the maximum transient duration (τ0) is

( )( )w2
1

0 CR nn≈τ , (12)

which also permits to derive R as a function of the transient
duration. As is shown in Appendix II.A (12) can be seen as
the time constant of the line impedance as approximated at
suitably low frequencies with a resistance (nR) and a
capacitance (½nCw) connected in parallel. Resistance nR is
the series of n elementary resistors, capacitance ½nCw is one
half of the parallel connection of all electrode capacitances
Cw. Factor ½ arises because a voltage V supplied at one end
of the line degrades to zero approaching the far end of the line
and therefore the total charge stored on capacitances Cw is
one half of V×nCw. Low-value resistors should be used to
make the transient (12) fast. The price to be paid for low-
value resistors is a large amount of parallel current noise, as
described in Sect. III.

B. Capacitive divider

For the case of a capacitive divider the second row of (2)
holds. Note that in this case k is a constant and Z0 is the
impedance of a capacitance.  Assume again I0=Q. With these
assumptions (4) with ZT=1/sCd shows no dependence on s,
and in consequence its time-domain counterpart is a delta-like
function. This is not surprising: the line is a passive circuit
made by capacitances only and has thus no bandwidth
limitation. This is an advantage against the resistive-divider
setup, in fact the transmitted charge, or the integral of in1(t) is
a clean step function. However the dependence of fraction (1)
on position is non linear. In fact capacitances Cw sink small
amounts of charge away from the main capacitive divider,
which affects the linearity of the divider itself. In Fig. 8 the
loss of linearity as derived from (6) is shown for realistic
values of the parameters. To minimize this nonlinearity
relatively large capacitances should be used in the divider. An
empirical rule for such dimensioning is
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CC wn
n

> , (13)

in which a comparison is made between approximations of
the charge stored onto the series of n capacitances C and that
sunk away by capacitances Cw, when an input voltage is given
at one end of the divider, the factor ½ taking into account that
the voltage on capacitances Cw degrades to zero approaching
the far end of the line. The sum of the capacitances shown in
(13) is a good approximation of the total line capacitance as is
shown in Appendix II.B. If (13) is verified linearity will be
mainly limited by the accuracy of the divider capacitors. Note
that high-voltage capacitors should be used because typically
thousands of volts are provided to bias the electrodes: if an
electrode breaks down a fast-rising charge would be induced
on the nearby capacitances and they could get damaged.

Advantages of a capacitive divider include a fast response
and a low noise, as will be shown in Sect. III.

III. NOISE OF POSITION FIGURE

The complex impedance Zn of the charge divider is the
input load of the amplifiers, and is given by (46) and (48) of
Appendices II.A and II.B, i.e.
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Yn has the form of a capacitance and a resistor in parallel
(resistive divider) or of two capacitances in parallel
(capacitive divider). Y represents the obvious component of
Yn inter-connecting the virtual earths of the two preamplifiers.
The other component is associated to the electrode
capacitances and can be visualized as a leakage path to
ground. The Johnson noise (bilateral) associated to Yn is
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where Re{Yn} denotes the real component of Yn, K is the
Boltzmann constant, T is absolute temperature, and the other
symbols are obvious. The principal noise sources at the right-
end amplifier input are shown in Fig. 9, where noise injection
from the opposite-end amplifier through path Y is apparent. In
the left-end amplifier e1 and i1 must be replaced with e2 and i2

and e2 with e1. The following relations hold for the series and
parallel noises (bilateral),
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For an FET RS =α/gm where gm is its transconductance and α
is a constant factor ranging from 0.5 to 1 [4], and for a BJT
RS=1/2gm+Rbb' where Rbb' is the base spreading resistor,  RF is
the feedback resistor of the amplifier, q is the electronic
charge, IL the leakage current of the input transistor. In
semiconductor detectors IL should include an effective current
obtained by summing all electrode's leakage currents each
weighted linearly from 0 to 1 as the electrode position gets
closer to the amplifier. Other non white noise contributions
[5] have been neglected. Cin and CF are the input and
feedback capacitances of the amplifier. Note that the
instantaneous Johnson-noise current (16) entering the right-
end amplifier and that entering the left-end amplifier are
anticorrelated. The series-noise cross talk through path Y
introduces an additional correlation between the amplifiers'
noises. These noise correlations must be taken into account in
deriving the total noise of position figure (1).  Figs. 10(a) and
(b) show the equivalent circuits for noise analysis of the right-
and the left-end amplifiers, where conventional signs are used
for the instantaneous noise voltages and currents to highlight

Fig. 9. Equivalent circuit of right-end amplifier and shaper useful for noise
calculations. Swap indices 1 and 2 of noise sources to get the equivalent
circuit of left-end amplifier.

Fig. 10. Equivalent circuits of right-end (a) and left-end (b) amplifiers and
shapers for noise calculations. A conventional direction is indicated for the
instantaneous noise currents and voltages to highlight the correlations.
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their correlations. Appendix III shows how these equivalent
circuits are derived. F(s) is the Laplace transform of the
impulse response F(t) of the amplifier-shaper chain
normalized to its maximum value. Note that with such a
normalization a current Qδ(t) fed into the amplifier's virtual
earth causes a signal at the shaper output with height Q.

Noise of position figure (1) in a bandwidth from f to f+δf is
given by the error propagation law, or
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where the star stands for complex conjugate, and
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 (18), (1) and (19) yield
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dQR and dQL are obtained from the equivalent circuits of Fig.
10 observing that the shaper output is read as an input-
referred charge with the used normalization of F(s):
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where e1,  e2,  i1,  i2 are the instantaneous noise voltages and
currents, Ct is the sum of all capacitances connected to the
amplifier input, including the capacitive component of Y,
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In (23) the mean squared voltages and currents are given by
(16) and (17), Y is given by (15), and Ct by (22). Putting (23)
in (20) and integrating over all values of f (from -∞ to ∞) one

obtains the variance 2
χσ  of the position figure. Frequency

dependence of (23) is dictated by factors 
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is often translated in the time domain thanks to Parseval's
theorem [6], [7], or
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where the prime stands for time derivative. TP is the "time
width parameter" of F(t) or the "processing time" and A, B are
nondimensional form factors depending on the shape of F(t)
and not on its time scale. Numerical values of A, B are listed
for most cases in [8].

Case of resistive divider: Putting (23) with Y=1/nR in (20)
and integrating over f with the help of (24) one thus obtains
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where second index "R" denotes the resistive-divider case and
2
2

2
1 hh +=ψ  is a factor depending on the position of charge

injection. Taking into account that (19) yield h1+h2=1 one

obtains 122 1
2
1 +−= hhψ . ψ is plotted vs. h1 in Fig. 11.  It is

worth noting that the dependence of (25) on ψ tends to vanish
if the noise component b0 B TP brought about by the resistive
divider, see (16), dominates  over the others. This is rather
intuitive: in this case the noises seen at the output of the
amplifiers are anticorrelated and the noise of the sum is much
lower than the noise of individual ends. Therefore the error in
the position figure (1) is dictated by the noise of one amplifier
only and it is thus independent of the location of the charge
injection.

Case of capacitive divider: Putting (23) with Y=sC/n in
(20) and integrating over f with the help of (24) one obtains
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where second index "C" denotes the capacitive-divider case.
It is worth noting that the dependence of (26) on ψ tends
again to vanish if CtC is dominated by the capacitive divider,

i.e. CtC≈C/n, and the series-noise component P
2
tC T/C Aa

dominates. In this case the cross talk between series noises
makes the noises at the preamplifiers' outputs again
anticorrelated, so that the noise of the sum is much lower than
the noise of individual ends. Therefore the error in the
position figure (1) is dictated by the noise of one amplifier
only and is thus independent of the location of the charge
injection.

A comparison between resistive- and capacitive-divider
setups translates into a comparison of the variances (25) and
(26). The ratio between variances (26) and (25) is
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which apparently depends on the processing time TP. The
resistive divider enhances the parallel noise (current noise of
resistor nR) and the capacitive divider enhances the series
noise (capacitance C/n enhances the total input capacitance
CtC). We so expect that the resistive divider has a better
performance at short processing times and the opposite for the
capacitive divider. However a resistive setup with nR in the
kohm range typically enhances the parallel-noise contribution
by several orders of magnitudes with respect to capacitive
setups, while a capacitive setup with C/n ranging from 50 pF
to 500 pF typically increases the series-noise contribution by
one order of magnitude with respect to resistive setups. We
thus expect that in most cases capacitive charge division
yields a higher resolution than resistive division at the
optimum processing times.

As an example, consider a MWPC of the type of that of
Fig. 1(a) with 20 wires having Cw=4.5 pF (½nCw=45 pF), and
two possible dividers: the first made by 20 resistors of 90 Ω
each (nR=1.8 kΩ), the second made by 20 capacitances of
4.4 nF (C/n=220 pF) each. For  both cases the amplifier's
input transistor has a capacitance Cin=10 pF and a
transconductance gm=10 mS. IL is assumed 0.5 nA, and a
symmetrical trapezoidal shaper amplifier with a flat-top to
base ratio of 1/3 is used (A=2, B=1.67). In Fig. 12, curve (1),

2
CRr  is shown where the above mentioned parameters are

used, ψ=1, and the "processing time" is the width of the
sloped edge of the trapezoid. Larger-than-unity values on the
y-axis indicate convenience for resistive against capacitive
divider, and viceversa.  Curve (2) has been obtained by
increasing R proportionally to the processing time. In fact the
divider's resistance is a tradeoff between the transient time of
the RCw line and the parallel noise. If R is proportional to the
processing time the transient time will be always an
acceptable fraction of the processing time itself and parallel

noise will be not as high at longer processing times. Curves
(1) and (2) do not change noticeably by varying ψ in the 0.5
to 1 range. It can be seen that for very fast processing times,
shorter than ≈200 ns in the considered case, the resistive
divider may yield a lower noise.  At a processing time of 1 µs,
however, the capacitive divider yields one-to-two orders of
magnitude of lower noise.

It is worth pointing out that with an array of photodetectors
coupled to a scintillator the charge-collection mechanism
would be in the µs range, and therefore the noise analysis
should be made at much longer processing times than in Fig.
12. In this case a capacitive-divider setup would be more
adequate.

A very simple system consisting of a discrete network of
resistors and capacitors, custom-made charge amplifiers, and
quasi-Gaussian shaper amplifiers has been arranged to check
the shown theory. The observed signals and noise have been
found in good agreement with (10), (25) and (26).

A different position figure, or

QR-QL

QR+QL
, (28)

is sometimes used rather than (1). (28) ranges from -1 to 1
rather than from 0 to 1, thus the signal swing gets doubled.
However the squared noise of such figure, as obtained with
the same procedure used to derive (25) and (26), is found to
be four times as large. Therefore (28) has the same signal-to-
noise ratio as (1). The shown analysis holds for both of them.

IV. CONCLUSION

The principal advantage of a resistive divider is the
potentially good linearity of position figure vs. position
relationship. The price to be paid is a large amount of parallel
noise. Such noise contribution decreases as the processing
time is decreased. However the processing time should be
greater than the time transient due to phase shifts in the RCw

line and the intrinsic signal width caused by the charge
collection mechanism.
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Parameters: gm=10 mS, Cin=10 pF. CF=10 pF. Capacitive divider:
CtC=285 pF, RF=50 MΩ, IL=0.5 nA. Resistive divider: CtR=65 pF,
nR=1.8 kΩ, RF=6 kΩ, IL=0.5 nA.



The principal advantages of a capacitive divider, instead,
are a fast response and a low noise. However the dependence
of position figure vs. position in this case is non linear. To
minimize such nonlinearity large-value capacitances should
be used in the divider.   However these capacitances cannot
be chosen too large because the series noise of the
preamplifier is enhanced as the input capacitance is increased.
A correct dimensioning of the divider capacitance appears as
a trade off between nonlinearity and noise.

A unified method to derive the waveforms and the noise of
the two configurations has been presented and discussed and
indications for a correct dimensioning of the setups have been
shown. A possible development of the method consists of
including 1/f- and Lorentzian-noise components in the
amplifiers' series noise.

V. APPENDICES

I.A. Calculation of characteristic impedance Z0

Z0 is the input impedance of a semi-infinite line of identical
cells. Let us connect a semi-infinite line of cells, as modeled
by Z0, to the output of an individual cell of the same type, as
shown in Fig. 13.

 The input impedance of such cell is again Z0. By
calculating it on the circuit of Fig. 13 one obtains the
following identity (call Y0=1/Z0):
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Solving (29) for Y0 one obtains
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Putting Yπ=1/R or Yπ=sC in (30) yields the first column of (2).

I.B. Calculation of transduction exponent k

Connect a voltage source Vin to the input of the cell of Fig.
13. Let us calculate the output voltage of this cell:
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Using Y0 as given by (30) in (31) we find
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Putting Yπ=1/R or Yπ=sC in (33) yields the second column of
(2).

I.C. Equations for the series connection of n cells

Consider the cell of Fig. 14. The relations
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hold.  Using (30) and (33) with Yπ=1/Zπ, (34) become
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Now let us connect a second identical cell at its input and call
V2 and I2 the voltage and the current at the input of the second
cell.  Similarly to (35)
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and substituting (35) in (36) we obtain
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Generalising (37) for n cells

Fig. 14. Elementary π-type symmetric cell.

Fig. 13. Equivalent circuit for calculation of the characteristic impedance.
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Putting a terminating impedance ZT=VT/IT at the end of the
line and calculating the ratio between the first and the second
of (38) yields (3).

Furthermore dividing the second of (38) by IT yields the
useful relation
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II.A. Impedance of an n-cell resistive line at low frequency

Consider the cascade of n cells of the type shown in Fig.
3(a), short circuited at the far end. The impedance of such
line is given by (5) and (2). Let us develop the hyperbolic
tangent term in (2):
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where
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Expanding terms (1+x)n and (1+x)-n in (40) yields
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Putting  s = jω  in (41) and assuming suitably low frequencies

 ω << 1/τw , (43)

(41) yields
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Substituting (44) in (42) yields
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Substituting (45) and (2) in (5) yields the low-frequency
impedance Zn of the n-cell line, or
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This is the parallel connection of an equivalent resistor nR
and an equivalent capacitor w2

1 Cn . (46) is an acceptable

approximation, in fact the processing time must be greater
than (12), which yields (43).

II.B. Impedance of an n-cell capacitive line

Consider the cascade of n cells of the type shown in Fig.
3(b), short circuited at the far end. The impedance of such
line is given by (5) and (2). A procedure similar to that of
Appendix II.A where R is substituted with 1/sC can be used
to simplify (5). Instead of (43) we thus pose
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 and we finally get
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The line impedance as expected is a pure capacitance, but
two simple contributions are now put into evidence. (48) is
an acceptable approximation, in fact (13) yields (47).

III. Equivalent circuit for noise calculations

Consider the circuit of Fig. 15 in which ZF=1/YF is the
impedance of a capacitance CF in parallel with a resistor RF,
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and en, in are the instantaneous voltage and current noises. Let
us propagate en and in to the output:
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Vo1 and Vo2 are the individual contributions of en and in to the
output. Cx is the capacitive component of the input
impedance. We now want to refer the first of (50) to an
equivalent input current. To this purpose we equal the first of
(50) to the second where in is substituted with the wanted
equivalent current ieq. This yields

Fig. 15. Circuit for noise analysis.
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 The overall equivalent noise current iT flown into the
amplifier virtual earth is so
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(52) shows that the principal system noises may be referred to
the input by means of a unique noise current source injecting
noise into the amplifier virtual earth. (52) contains a term
ensCt that can be conveniently visualized as a voltage source
en injecting a current into the amplifier virtual earth through a
capacitor Ct=Cx+CF. The other components of the current
noise source (52) have spectral densities (bilateral)
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where RS, or the series-noise equivalent resistor, is discussed
after Eq. (17). It can be shown that (53) dominates over (54)
if
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which is largely met in most cases, being RS a few tens of
ohms typically. We conclude that (52) yields in good
approximation

tnnT Cseii −≈ (56)

or the sum of two uncorrelated components. Note that the
sign "-" in (56) is not important being en and in uncorrelated.
(56) is visualized by means of an equivalent circuit of the
type of those shown in Fig. 10.
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