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(arrêté du 30 mars 1992)

présentée et soutenue publiquement le

8 novembre 2002

par

Ketel TURZÓ
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B.3 Liège cascade . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

C Moving Source Fit 129
C.1 Maxwell-Boltzmann distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
C.2 Radial flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
C.3 Coulomb repulsion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
C.4 A moving source in the laboratory . . . . . . . . . . . . . . . . . . . . . . . . . . 131
C.5 Relativistic energies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
C.6 A relativistic moving source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
C.7 Relativistic radial flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
C.8 ‘Relativistic’ Coulomb repulsion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

D Proton kinetic energy spectra 135

References 147



List of Figures

1 Phase diagram of nuclear matter. . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2 Caloric curves (1995-2001). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3 INDRA detector. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.1 Phase diagram of nuclear matter. . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.2 Equation of state of nuclear matter. . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.3 Equation of state of nuclear matter for different temperatures. . . . . . . . . . . 19
1.4 Three sources. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.5 Possible multifragmentation scenario. . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.1 GSI accelerator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.2 INDRA detector. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.3 Module and étalon. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.4 Experimental setup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.5 Halo detectors and 4-segments scintillator. . . . . . . . . . . . . . . . . . . . . . . 27
2.6 Invariant rapidity spectra of lithium fragments. . . . . . . . . . . . . . . . . . . . 29
2.7 Halo event distributions as function of Nc. . . . . . . . . . . . . . . . . . . . . . . 30
2.8 INDRA setup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.9 Rapidity spectra of lithium for 1000 AMeV. . . . . . . . . . . . . . . . . . . . . . 31
2.10 Original and corrected proton energy spectra. . . . . . . . . . . . . . . . . . . . . 32

3.1 ∆E-E matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2 Identification in CsI(I). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3 Identification in CsI(II). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.4 Identification distributions in INDRA. . . . . . . . . . . . . . . . . . . . . . . . . 36
3.5 Total energy spectra (GANIL and GSI). . . . . . . . . . . . . . . . . . . . . . . . 37
3.6 Fit 3rd-4th campaigns. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
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Introduction

Multifragmentation is the emission of several intermediate mass fragments (3 ≤ Z ≤ 30) from a
hot nucleus, a phenomenon observed in nuclear reactions, using light and heavy projectiles over
a wide range of incident energies. The goal of these studies is to learn more about the tendency
of fermionic nuclear matter to appear in clusters and, perhaps eventually, about the topology
of the nuclear phase diagram (see Fig. 1), in particular the evasive liquid-to-gas transition. Ad-
ditionnally, the explosive features of some of the reactions allow us to study the compressibility
of nuclear matter. In fact, the multifragmentation process is believed to appear in the instable
region, also called spinodal region, of the nuclear phase diagram where liquid and gas phases
coexist. Such information can be important for astrophysical applications as, for instance, during
the neutron star formation and the explosion of a supernova of type II. During these processes,
the prevailing thermodynamic conditions are expected to be similar to those obtained in the
multifragmentation of finite nuclei [Vio98, Bay71, Bet90].
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Figure 1: Phase diagram of
nuclear matter. The temper-
ature is plotted as a func-
tion of the relative density,
ρ0 is the stable nucleus den-
sity. During the collision, the
highly excited compound nu-
cleus is believed to follow the
trajectory indicated by the
dashed arrow, from the liquid
phase to the spinodal region,
where the multifragmentation
occurs. This region is a mix-
ture of liquid and gas phases
and is unstable.

In 1995, the study of the liquid-gas phase transition led to the publication of the first caloric
curve, the relation between temperature T and energy E, of nuclear matter by the ALADIN
group [Poc95] shown in the left panel of Fig. 2. This caloric curve, obtained from data for the
system Au+Au at the incident energy of 600 AMeV, presents a plateau-like behaviour from
liquid to gas phases in agreement with the thermodynamical view of multifragmentation. This
plateau may be interpreted as a sign of a liquid-gas phase transition.
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Figure 2: Left panel: Caloric curve for the system Au+Au at the incident energy of 600 AMeV in 1995
[Poc95]. The full line corresponds to the liquid curve and the dashed line to the vapor one. Right panel:
Caloric curves in 2001. ALADIN (squares), EOS (dashed lines) and ISIS (dashed-dotted line) data are
compared [Ode99, Kwi98, Hau98].

In recent years, several caloric curves for various reaction systems and beam energies were
published which show discrepancies between them as exposed in the right panel of Fig. 2
[Ode99, Kwi98, Hau98]. One, if not the main difficulty when comparing caloric curves obtained
from different reactions at different incident energies is the determination of the excitation en-
ergy. It is obtained by summing up kinetic energies of all particles after equilibration has been
achieved. Since a non-negligible amount of light particles is emitted prior to equilibration, the
number of these preequilibrium particles and also their energies have to be known. This requires
a detailed knowledge of their energy spectra.

Some theoretical models also highlight the importance of the kinetic energies. The statistical
multifragmentation model (SMM) points out the contradiction between kinetic and microscopic
temperatures [Ode99] (see chapter A.1). The negative heat capacity, considered as a signal of
a phase transition, is determined partly from particle kinetic energies [Dag00]. The classical
molecular dynamics model (CMD) predicts from fragment kinetic energies that the expansion
of the source is a non-equilibrium phenomenon [Cam02].
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Fig. 2 also shows that the study of liquid-gas phase transition may imply very different re-
actions from light hadron to heavy ion projectiles. In this work we focus on spectator reactions
in asymmetric systems. Historically, multifragmentation was observed in asymmetric systems
[Mey80, Jak82]. Nowadays, the interest comes from the supposed equilibrated source created in
this kind of reactions from the largest nucleus, the target in normal kinematics or the projec-
tile in inverse kinematics. Asymmetric collisions in normal kinematics were studied by the ISIS
and FASA collaborations, also with 12C projectiles in the FASA case [Kwi98, Avd98]. ALADIN
and EOS performed experiments in inverse kinematics, in particular 197Au+12C [Sch96, Hau98].
The latter type of experiments permits the detection of the heavy fragments without threshold,
a certain advantage for the study of multifragmentation. However, the hydrogen isotopes are
difficult to detect in the ALADIN spectrometer because of their wide distribution in rapidity
and their charge-to-mass ratio which is twice that of the fragments. In EOS, a Time Projection
Chamber at the target was used for the study of these light particles. In general, the kinetic
energies in the source frame are more difficult to determine in inverse kinematics because of the
need of a transformation into the moving system.

Because of these limitations of inverse kinematics and the interest in kinetic energies, it was
decided to use the INDRA1 4π multidetector (see Fig. 3) to study various systems and incident
energy ranges, amoung them 12C+197Au reactions at relativistic beam energies. This detector,
designed for installation at GANIL2, was relocated to GSI3 from 1998 to 1999.

Figure 3: INDRA: exploded view of the detector assembly consisting of 96 ionization chambers, 192
silicon detectors and 336 crystals of cesium iodide organised in 17 rings centered on the beam axis.

Its large angular coverage, 90% of 4π in solid angle, and its very good resolution for light
particles make INDRA a good device to study the reaction stages. Of course, this detector also
has some disadvantages including thesholds which forbid the detection of the heaviest fragments
and upper limits in kinetic energy given by the detector lengths for the light particles.

1Identification de Noyaux et Détection avec Résolution Accrue
2Grand Accélérateur d’Ions Lourds (Caen, France)
3Gesellschaft für SchwerIonenforschung (Darmstadt, Germany)
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The choice of the 12C+197Au system [Aug96] at the incident energies from 95 AMeV to 1800
AMeV was determined by the weight of the projectile, heavy enough to produce a maximum
number of fragments in central collisions and light enough to avoid δ-electron problems. The use
of INDRA with relativistic beams provided an experimental challenge. The beam halo, although
negligible in relative intensity, generated considerable amounts of light particles with low multi-
plicities at the highest incident energies.

The present thesis is an overview of the new results obtained in the 12C+197Au experiments
of the INDRA@GSI campaign. This campaign was the occasion of the study of several systems
over a wide range of energies: Au+Au from 40 to 150 AMeV, Xe+Sn from 20 to 200 AMeV, and
C+Au,Sn from 95 to 1800 AMeV. This work gives as an introduction into multifragmentation
studies a general presentation of the equation of state applied to nuclear matter, the nuclear
temperature and the relativistic heavy ion collisions. The INDRA@GSI experiment is presented
in its particularities as are the data reduction methods for particle identification and calibration.
The event centrality selection is described with a comparison of different global variables used for
the determination of the impact parameter. The main physics topic studied in this work is the
eventual determination of the reaction stages, i.e. of the early and target sources, by analysing
proton and fragment kinetic energy spectra. The proton spectra are compared to combinations
of theoretical models including early and multifragmentation emissions. The characteristics of
the fragment target source are compared to previous ALADIN results and to a combination of
models supporting the concept of the equilibrated source. The pions, identified for the first time
in INDRA, and the fast protons are exploited to study possible correlations between them and
intermediate mass fragments. The status of these results is given as a summary and accompanied
by a description of future prospects on 12C+197Au reactions and multifragmentation study.



Chapter 1

Nuclear Matter
and Relativistic
Heavy Ion Collisions

1.1 Properties of nuclear matter

Nuclear matter is very different from ordinary matter in many aspects. Its density is considerably
higher than the one of the bulk matter, its interaction is governed by the strong and weak forces
in addition to the electromagnetic forces. Nevertheless, this matter can sometimes be described
with macroscopic variables like pressure or temperature in the frame of specific limitations. The
evolution of the system consequently to the changes of the macroscopic variables is described
by a relation between these variables: the equation of state.

Phase diagram

By analogy to four states of the ordinary matter (gas, liquid, solid, plasma), it is possible to
define also such four states to describe the features of the nuclear matter, as sketched by the
Fig. 1.1.

The liquid phase, for the low temperatures and densities, corresponds to the nuclear
matter in its ground state.
The condensed phase is supposed to be cold matter at high density where nucleons
are organised like into a crystal. The protons and neutrons alternate in the net, with
neighbouring spins that are oriented in opposite directions.
The gaseous phase appears at fairly high temperatures and low densities at which
the nuclei evaporate into a hadron gas. This phase is explored by the high energy
physics experiments at CERN, GSI, Fermilab, RHIC, etc...
The plasma phase is predicted for densities of five to ten times the normal density of
nuclear matter and for temperatures above around 150 MeV. One should observe then
the dissociation of hadrons into their elementary constituents and the appearance of
a deconfined mixture of quarks and gluons.

Today most of this diagram still remains unexplored. Only very recent experiments may have
permitted to reach the quark-gluon plasma or the condensed phase.
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Figure 1.1: Phase diagram of nuclear matter. The temperature is plotted as a function of the relative
density, ρ0 is the stable nucleus density. The four states of nuclear matter are represented : liquid, hadron
gas, condensed matter, and quark-gluon plasma.

The equation of state of nuclear matter

Generally, the equation of state of a system is a relation between three thermodynamical vari-
ables. Expressed in the most usual form, the nuclear equation of state relates the internal energy
E to the density ρ and the temperature T, distinguishing a thermal component and a compression
component:

E(ρ, T ) = EC(ρ, T = 0) + ETH(ρ, T ) + E0 (1.1)

with EC(ρ, T = 0): compression energy at T=0, ETH : thermal energy, and E0: binding en-
ergy of the infinite nuclear matter in its ground state.

Fig. 1.2 displays an example of the corresponding shape of the equation of state at temper-
ature zero. The top dashed line corresponds to the energy of an excited system, divided in a
thermal component ETH and a compression component EC . The notion of saturation means
that, for a sufficiently heavy nucleus, increasing its number of constituents does not modify the
density of nucleons in its central part. Reaching a limit value, this density, so-called saturation
density ρ0, becomes independent of the nuclear size. This property is fundamental since one
can then assimilate the core of heavy nuclei to infinite nuclear matter. For a system symmetric
in numbers of protons and neutrons, the saturation density was theoretically estimated to be
ρ0 = 0.17 ± 0.02 nucleon.fm−3. The universality of this value has been confirmed by exper-
iments of nuclear radius measurements. They demonstrated for almost all ground state nuclei
the validity of a nuclear radius formula R = r0A

1/3 (r0 = 1.2fm) indicating that each nucleon
occupies the same elementary volume 4

3πr3
0 � 7fm3 inside any nucleus.
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Figure 1.2: Predicted equation of state
for nuclear matter. The internal energy
per nucleon is sketched as a function of
the density ρ normalised to the satura-
tion density ρ0. The total energy at tem-
perature zero (top dashed line) is com-
posed of the thermal component ETH

and the compression component EC .

Different theoretical descriptions have been developped on the basis of the nuclear matter
such as the liquid drop model [Eva55]. These approaches authorise, on the basis of the Bethe-
Weizsäcker formulae, the extension of the properties of the infinite nuclear matter to the finite
nuclei. Their principle is to introduce parametrised correction terms that take into account the
specificity of nuclei due to the effects of surface, Coulombian repulsion, and isospin asymmetry.
For a symmetric system of infinite nuclear matter, the term of volume effects gives the binding
energy per nucleon E0 estimated to E0=-16 AMeV.

An important parameter of nuclear matter is the compressibility which is determined by the
curvature of the internal energy per nucleon as a function of the density. In the vicinity of the
saturation point, this function has a minimum and one parametrises the compression energy by
a parabolic function like:

Ec(ρ) =
K∞
18

(ρ − ρ0)2

ρ2
0

(1.2)

whose quadrature coefficient is fixed by the compressibility module K∞:

K∞ = 9ρ2
0

[
d2Ec

dρ2

]
ρ=ρ0

(1.3)

The experimental determination of K∞ can be done from giant monopol resonances, or
through studies related to astrophysics [Gle88] and to the collective phenomena in heavy ion
collisions. The results as obtained until now estimate K∞ to be between 200 and 400 MeV. If
K∞ is low (� 200 MeV), the equation of state is called soft because one has to give relatively
little compression energy to reach high densities. If K∞ is high (� 400 MeV), one speaks about
a hard equation of state because, one must give a comparatively higher compression energy to
reach the same densities.
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From recent results of the FOPI collaboration [And99, And02], experimental data in compar-
ison to IQMD simulations, for Au+Au at 400 and 600 AMeV, seem to be closer to a soft equation
of state. A similar report emerges from studies of kaons and pions production in Au+Au and
C+C collisions between 600 and 1500 AMeV with the KAOS detector [Stu01, Fuc01].

The difficulties of theoretical approaches

The equation of state permits the macroscopic description of a system through thermodynamical
variables. These variables explicitly depend on microscopic properties. So any equation of state
is based on the knowledge of the elementary interactions between the constituents.

The nucleon-nucleon interaction potential is known as having a dominant term that is re-
pulsive at short range (≤ 0.5 fm) and attractive at longer range (≥ 0.8 fm) [Eva55]. In order
to roughly characterise the equation of state of nuclear matter, one can compare the potential
to the one of a molecule. This formal correspondence suggests that the equation of state of an
infinite system of nucleons is comparable to the one of a Van der Waals gas. It allows to predict
the shape of the isotherms and the existence of a liquid-gas phase transition.

Using a more rigorous approach, in particular the fermionic nature of nucleons brings serious
problems. In contrary to the simple real fluids, it becomes more difficult to link the nucleon-
nucleon interaction to the equation of state. Consequently, the actual models describe only
approximatively the saturation point, a basic property of the nuclear matter, from the nucleon-
nucleon interaction. Theoretically, the saturation mechanism is defined in a simple way as being
the balance between the attractive part of the nuclear interaction potential and the repulsion
between nucleons, due to their fermionic nature, and the repulsive part of the potential. But
in their attempt to reproduce the saturation point, the calculations technically fail because of
n-body forces (from three-body forces to in-medium effects). Concerning this latter point, it
means that it is necessary to take into account the contribution of all the other nucleons in
the elementary processes of scattering. The Brückner theory is used in this aim in calculating
an effective interaction from the free nucleon-nucleon interaction [Eva55]. However, this theory
does not describe the saturation point. Another method is to build classes of phenomenologic
forces as the Skyrme forces [Vau72]. This approach allows to describe the saturation but this
description is obtained by tuning a certain number of free parameters which do not originate
from the nucleon-nucleon interaction.

Predictions at finite temperatures

Although the formulation of an equation of state at zero temperature still remains a challenge
from the theoretical point of view, it is interesting to attempt an estimate of its shape for finite
temperatures. By extending different calculations realised to non-zero temperature, it has been
demonstrated that the purely thermal effect on the structure of the nucleon-nucleon interaction
is relatively modest [Fri81]. This is the reason why on can use these forces at finite temperature,
once parametrized at zero temperature. Such studies [Sau76] predict the behaviour displayed in
Fig. 1.3 in the pressure-density plane. We can observe a coexistence region of liquid-gas phases
(full line cutting isotherms), defined for temperatures lower than a critical temperature (TC =
17.9 MeV). We note also a so-called spinodal region (area with circles) at low density, which
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is characterised by a mecanically unstable regime for which the fluctuations of density are am-
plified, whereas they are attenuated outside these special conditions of ρ and T. This spinodal
region corresponds also to a negative compressibility K = − 1

V
dP
dV causing this instability. Nu-

clei reaching this region blow up into several fragments. This phenomenon is supposed to be
multifragmentation [Gua96, Gua97]. As this occurrence is believed to take place in a region of
coexistence of the liquid and gas phases, multifragmentation is a way to study the transition
between these two phases.
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Figure 1.3: Predicted equation of state
for nuclear matter for different temper-
atures indicated in MeV (adapted from
[Sau76]). The pressure is sketched as a
function of the density. The full line cut-
ting the isotherms delimits the coexis-
tence region of liquid-gas phases. The
spinodal region is represented by the area
with circles.

Nuclear temperature

The concept of temperature is well defined in classical statistical mechanics. We attempt to apply
this definition to nuclear systems although some shortcomings are present: the short time range
of the reaction, the finite size of the system, the complex dynamics, and the various interactions
which occur in a collision.

One of the fundamental quantities used in classical statistical mechanics is the number of
states Γ(E,N) of a given system with a particle number N which lies in the vicinity ∆E of the
energy E. This function is directly proportional to the density of states ρ(E,N) at energy E,
such that:

Γ(E,N) = ρ(E,N).∆E (1.4)

It is also convenient to introduce the entropy of the system S(E,N):

S(E,N) = ln(Γ(E,N)) = ln(ρ(E,N)) + ln(∆E) (1.5)
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With these quantities, the definition of the temperature provided by statistical mechanics is:

1
T

=
∂S

∂E
=

∂ln(ρ(E,N))
∂E

(1.6)

where ∆E is considered independent of E. This definition is applicable to any isolated sys-
tem, like a nuclear system if one regards the very short range of the nuclear force.

While the formal definition of temperature is simple, the relevance of the concept and its
measurability depend on further requirements which, in more realistic nuclear cases, one may
only approximately meet. The excitation of an isolated system can be characterised by an energy
but, in order to determine its temperature, two additional major features must be known: the
degree of equilibration and the specific density of states. The most critical of these requirements
is that the ensemble must be in full statistical equilibrium. This means that each of the states
included in ρ(E,N) is populated with equal probability. For highly excited nuclear systems,
the requirement of full equilibrium may be difficult to achieve in practice. With the increase of
the excitation energy, a reduction of the lifetime of the system is observed and a homogeneous
population of the states becomes less probable.

It is difficult to know, a priori, the degree of equilibrium of a nuclear system because the
dynamics are complex and only partly known. Nevertheless, previous works on relativistic heavy-
ion collisions present results indicating an independence of fragment emission to incident energy
that may be interpreted as a signal of an equilibration [Sch96, Ode99]. To continue the explo-
ration of equilibrium, it is instructive to assume that the population of states is sufficiently
complete to allow the utilisation of the concept of temperature for nuclear systems.

1.2 Relativistic heavy ion collisions.

projectile
projectile
spectator

fireball

target target
spectator

Figure 1.4: After collision, there exists three sources of light particles and fragments: the projectile and
target spectators and the participant region, so-called ‘fireball’.

The heavy ion collisions at relativistic energies (100 AMeV ≤ Elab ≤ 2 AGeV) are the unique
tool to study in the laboratory nucleonic systems under extreme conditions of temperature and
pressure. It is hoped to access to the properties of nuclear matter by exploring wide regions of
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its phase diagram and to reach thromodynamical conditions that are similar to the inner part of
supernovae, of the neutron stars and in the early universe. At relativistic energies, the collision
can be described within the geometrical participant-spectator picture. In this scheme, that is
shown in Fig. 1.4, a geometrical overlap region between the target and the projectile is associated
to each impact parameter. When this region is sufficiently large, a so-called ‘fireball’ is created,
which is the seat of high densities and temperatures. The fireball contains the ‘participant’
nucleons wich are supposed to be free during its explosion. The residues of the target and
the projectile, outside the overlapping region, are excited by the collision. They constitute the
‘spectator’ matter that deexcites by evaporation or multifragmentation.

preequilibrium 
emission

OFOF

liquid drops
=

At freeze−out : thermal and chemical equilibrium

fragments (Z>2)

STARTING POINT 

STATISTICAL MODELS

STARTING POINT

DYNAMICAL MODELS

Figure 1.5: Possible multifragmentation scenario.

The mechanisms taking place in a heavy-ion reaction have dynamical and statistical aspects.
A deep knowledge of these mechanisms is needed in order to extract the equation of state. The
heavy ion collisions at relativistic energies may lead to different processes, from the formation of
a compound system that deexcites by evaporation to the total disintegration of the system into
a hadron gas. The intermediate regime is characterised by the breakup of the nuclear system
into fragments (Z ≥ 2) of various masses and several nucleons (see Fig. 1.5). This is accom-
panied, at sufficient incident energy, by the production of additional hadrons such as pions,
kaons, etc... The usually believed scenario of collisions can be schematically decomposed into
three stages. First, the penetration of the two nuclei causes a phase of heating and compression
during which the temperature reaches some tens of MeV and the density two to five times the
normal density. When the maximal density is reached, at about 15 fm/c (5.10−23 s) after the
contact of the nuclei, an expansion stage begins until the reaction products do not interact any
more with each other, the so-called ‘freeze-out’ stage. At this point, the system dissociates into
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aggregates and various components. A first emission of light particles (n, p, d, t, 3He, 4He)
and elementary particles like pions is observed before and during the expansion stage. At the
breakup of the composite system, there is emission of light particles, intermediate mass frag-
ments (3 ≤ Z ≤ 30), and heavy fragments (Z ≥ 30). Finally, subsequently ‘secondary’ light
particles are produced from the de-excitation of the emitted fragments. the total length of the
collision varies with the system and the incident energy but it is roughly around 150 to 200 fm/c.

The formation mechanism of the fragments, whether they are the remnants of an incom-
plete destruction or the products of a condensation out of the disordered matter, is still the
topic of very active research [Bon95b, Mor93, Fel99]. In order to investigate this question, re-
cent experiments with the ISiS detector at Brookhaven studied reactions of energetic hadrons
including pions and antiprotons with gold targets in a momentum range from 5 GeV/c to 14.6
GeV/c [Lef99b, Bea99, Bea00]. The aim of these experiments was to determine the role of the
excitation energy in the fragment production. It is based on the expectation, tested with intra-
nuclear cascade calculations (see appendix B), that light energetic projectiles will generate a
statistical (thermal) disorder without exciting collective modes such as compression, rotation,
or shape deformations. These are known to break nuclei very efficiently and would mask the
nuclear response to the thermal excitation [Col97]. The ISiS experiments show that the antipro-
ton projectiles at high momentum may generate a very high excitation energy. However, the
corresponding fragment multiplicities are significantly smaller for the less energetic antiproton
beam for the same range of excitation energy. It is therefore an open question whether the ex-
citation energy by itself is the only parameter that governs the decay properties and fragment
production. While this may be partly connected to the difficulties inherent with experimentally
determining the excitation energy [Sch96], it is nevertheless obvious that the solution of this
problem will help to better understand how fragments are formed [Ode00].

The limits of generating excitation energy can be overcome with composite projectiles. Sys-
tematic sets of data with projectiles of various mass and energy have been collected by different
collaborations as ALADIN, EOS, or FASA [Sch96, Hau00, Avd98]. The ALADIN results ex-
hibit a contimuing rise of the cross-section for high excitations with increasing mass of the
target for the fragmentation of gold projectiles while the isotopic temperatures THeLi remain
independent. These isotopic temperatures are determined from the double ratio of the yields of
two pairs of nuclides with the same differences in neutron and proton numbers, 3He/4He and
6Li/7Li, according to the method suggested by Albergo and coworkers [Alb85]. However these
temperatures present a dependence on the variable Zbound, representing the sum of the atomic
numbers Zi of all projectile fragments with Zi ≥ 2, which is inversely correlated with the ex-
citation energy. The isotopic temperatures tend to their highest values (THeLi ∼ 11 MeV) at
low Zbound, i.e. at the highest excitation energies reached in these reactions. Large systems at
even higher excitations can be produced in central collisions. In this case, the idea of excitation
as a simple heating process has to be abandoned. Collective modes, compression as well as the
directed outward motion of particles and clusters from primary collisions generate an explosive
pattern, quantified as collective radial flow [Rei97]. The production of large clusters is rare and
inversely correlated with the observed amount of flow. Some features of these energetic reactions
have been reproduced with molecular dynamics calculations [Chi00] but to fully understand the
clusterization mechanism in the dynamical environment still remains an interesting problem of
future research.



Chapter 2

INDRA@GSI Experiment

In 1998 and 1999, a series of experiments was conducted at GSI with the INDRA multidetector.
Several projectile-target systems over a wide range of energies were studied, Au+Au from 40
to 150 AMeV, Xe+Sn from 20 to 200 AMeV, and C+Au and C+Sn from 95 to 1800 AMeV.
Enriched targets of 112,124Sn were used in order to study isotopic effects.

The 4π-multidetector INDRA was developed at GANIL by a collaboration of French labora-
tories : GANIL, IPNO 1, DAPNIA 2, and LPC 3. The INDRA detector is also used by the IPNL
4, Italian, Canadian, and Romanian groups. Three experimental campains have been performed
at GANIL in 1993, 1994, and 1997 at intermediate energies (energies limited at 29 AMeV for
Au).

These three campaigns of INDRA at GANIL have been devoted to the study of the pro-
duction and decay modes of excited nuclei produced with intermediate-energy heavy-ion beams.
The continuation of these measurements and their extension to higher beam energies, accessi-
ble with the heavy-ion synchrotron SIS, hase been one of the motivations for the INDRA@GSI
campaign.

The present chapter describes briefly the accelerator devices of GSI and the INDRA detector
and focus on technical particularities of the experiment, especially the relativistic energy part.

2.1 GSI accelerator facility

GSI operates a heavy ion accelerator facility consisting of the linear accelerator UNILAC (energy
of 2 - 20 AMeV), the synchrotron SIS5 18 (1 - 2 GeV/u), and the experimental storage ring
ESR6 (E < 1 AGeV) (Fig. 2.1). Ions from a Penning source are injected by the North and South
injectors and then pass through the adjoining Wideröe structure. Alternatively, they originate
in the high-charge injector before being into the Alvarez structure of the UNILAC at about 5%
of the speed of light. In the UNILAC, the ion beam reaches 16% of the speed of light. Part of the

1Institut de Physique Nucléaire d’Orsay, Paris (France)
2Département d’Astrophysique, de physique des Particules, de physique Nucléaire et de l’Instrumentation

Associée
3Laboratoire de Physique des Corpuscules, Caen (France)
4Institut de Physique Nucléaire de Lyon, Lyon (France)
5SchwerIonenSynchrotron
6Energy Storage Ring
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Figure 2.1: GSI acceleration facility: UNILAC (Linac), SIS (Synchrotron), ESR (Storage Ring)

beam is then diverted to the adjoining experimental hall for experiments, while the remainder
is transferred to the heavy ion synchrotron SIS for further acceleration. There, the ions reach
up to 90% of the speed of light, before being directed to experiments at the fragment separator
FRS, the ESR, or the target hall.

During this experimental campaign, the INDRA detector was installed in the cave B, in the
target hall.

2.2 INDRA multidetector

The 4π-multidetector INDRA offers high capabilities for the simultaneous detection of the nu-
merous light charged particles and nuclear fragments that are emitted during heavy ion collisions.
A total of 640 individual detectors (ionisation chambers, silicon detectors and cesium iodide crys-
tals) covers 90% of the 4π solid angle (see Fig. 2.2) [Pou95].

These 640 detectors are organised in 336 modules. Each module consists of two or three
detectors according to the angle: 96 ionisation chambers, 192 silicon diodes (Si), 336 thallium
activated Cesium Iodide scintillators (CsI). The telescopes are grouped in 17 rings around the
beam axis. Each ring consists of 8, 12, 16 or 24 detection modules.
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Figure 2.2: INDRA: a detector assembly consisting of 17 rings (‘Couronnes’) of telescopes covering 90%
of 4π around the target (‘Cible’) [Pou95].

These rings have the following types of modules:
- ring 1 (2o ≤ θlab ≤ 3o) : 12 telescopes of Si’s and CsI’s with photomultipliers, newly developped
for INDRA@GSI.
- rings 2 to 9 (3o ≤ θlab ≤ 45o) : 12 or 24 telescopes of ionisation chambers, Si’s and CsI’s with
photomultipliers (Fig. 2.3, left panel).
- rings 10 to 17 (45o ≤ θlab ≤ 178o) : 8, 16 or 24 modules of ionisation chambers and CsI’s with
photomultipliers.

Figure 2.3: Left-hand side: a typical INDRA module (between 7o and 45o). The detectable particle
(longest arrow) punches trough the ionisation chamber, the silicon detector, and ends up in the CsI(Tl)
crystal. Right-hand side:: mechanical assembly of the 8 Si-Si-CsI(Tl) telescopes in rings 10 to 17 of the
INDRA detector (θlab > 45◦). The silicon detectors are represented by the disks in front of the CsI crystals
which are facing the target (cible). The dashed line corresponds to the beam (faisceau) axis [Pou95].

The INDRA geometry was optimised for the observation of multiple fragment emission. The
most forward ring has to withstand a high rate due to elastic scattering. Rings 2 to 9 have to
cover a large energy range and to avoid the double counts, the backward rings complete the
angular coverage.
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A part of the INDRA@GSI campaign has been dedicated to asymmetric systems like 12C+197Au
and 12C+112,124Sn at beam energies ranging from 95 to 1800 AMeV. The 12C+197Au system is
the purpose of the present work. The velocity of the target spectators is small also at relativistic
energies, and their emission nearly isotropic in the laboratory frame while light particles from
the initial reaction stages are forward peaked. Consequently, the study of spectator fragmenta-
tion is better achieved at backward angles where, however, a good isotopic resolution with low
threshold is only provided by the Si-Si-CsI(Tl) calibration telescopes of INDRA (Fig. 2.3, right
panel). These eight telescopes are distributed in the angular range from 45◦ to 180◦, one mod-
ule per ring, and consist of two circular silicon detectors of 2cm of diameter, a 80-µm detector
followed by a Si(Li) detector with thickness 2000 µm, mounted between the ionisation chamber
and the CsI(Tl) crystal of a telescope module.

2.3 The experimental setup: INDRA at GSI

The move of INDRA to GSI presents some setup particularities because of the very narrow
entrance of the detector: 12 mm of diameter. As the beam emittance of a synchrotron (GSI)
is larger than that of a cyclotron (GANIL), it is essential to control very carefully the beam
focalisation all along the beam axis before and during the experiment[Tur98].
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Figure 2.4: Experimental setup of INDRA@GSI experiment in cave B at GSI.

Along the beam line (from the last GSI quadrupole towards INDRA), as it is drawn in Fig.
2.4, one finds successively a scintillator target with video, the two GANIL quadrupoles, a first
profiler in front of a Faraday cup, a halo detector, the INDRA reaction chamber, and a second
profiler back. The first ring of INDRA (2o − 3o) is shielded with a removable brass plate, 2cm
thickness, in order to avoid hard damages during the focalisation.

The scintillator target with its video is used to control the position of the beam just before
the GANIL quadrupoles. These quadrupoles play a major role in the beam focalisation. They
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permit the focalisation on the target by focusing first on the front profiler and afterwards and
the back profiler. The focalisation on the target is determined knowing the quadrupole current
densities corresponding to this two tunings and the distances between the profilers and the tar-
get. For the non-relativistic beams of the INDRA@GSI campaign, the Faraday cup may protect
INDRA during the first beam settings while the beam intensity is lowered from 107 to 104 par-
ticles per spill.
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Figure 2.5: Left-hand side: the halo detector is a ring of plastic scintillator connected to a
photomultiplier (PM) by a light guide in plexiglas. The 4-segments scintillator is an ensemble
of four squared layers of orange plastic scintillator of 2mm thickness connected to photodiodes
with a central hole of 20 mm diameter. The whole setup is held by a thick aluminium plate.
Right-hand side: the ‘big’ halo detector is a plate of blue plastic scintillator of 80 mm side, 4
mm thickness, with a central hole of 20 mm of diameter.

After the focalisation period, during the experiment, the control on line is performed by the
halo detector, the ‘4-segments’ scintillator, and the first ring scalers. The halo detector is a ring
of blue plastic scintillator of 200 µm thickness for the Au and Xe beams and 2mm thickness for
the C beams, connected with a light guide to a photomultiplier and held by a thick aluminium
plate (see Fig. 2.5) just in front of the entrance of the detector. The diameter of the hole of the
halo detector is 1mm smaller than the diameter of INDRA entrance. The 4-segments scintillator
is an ensemble of four squared layers of orange plastic scintillator of 2mm thickness connected
to photodiodes with a central hole of 20 mm diameter. This detector is placed between the halo
detector and the aluminium plate. The 4-segments detector gives the direction of the beam in
case of unprecise focalisation and is only used on-line. The halo detector plays the important
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role of a veto during the experiment and the data reduction. Some events may be produced
by projectiles punching through this detector and may be likely to come from reactions in the
technical structure of INDRA. By the use of the halo detector as a veto, these events can be
rejected from the event selection.

The focalisation of carbon beams at relativistic energies was less precise than that of beams
at lower energies. In order to improve the veto ability of the detectors in front of the backward
rings of INDRA, a second and bigger halo detector was installed in the vacuum chamber, in front
of the first halo scintillator. This second detector consists in a plate of blue plastic scintillator
of 80 mm side, 4 mm thickness, with a central hole of 20 mm of diameter (see Fig. 2.5). Two
sides are connected with light guides to photomultipliers. For the carbon beams, the signals of
the two halo detectors are coupled as a unique ‘halo’ signal.

2.4 Characteristics of the C+Au experiment

This work is devoted to the asymmetric reaction C+Au at the incident energies 95, 300, 600,
1000, and 1800 AMeV. One of the main features of the C+Au system at relativistic energies
is that the target emissions remain at the same rapidity in the laboratory for all the incident
energies. This characteristic is visible in the invariant rapidity spectra of lithium fragments
presented in Fig. 2.6. The rapidity is defined as usual,

y =
1
2
ln

E + p//

E − p//
(2.1)

with the longitudinal momentum p// and the total energy E of the particle.

These spectra show for all the five energies (for 95 to 1800 AMeV, from the top to the
bottom) a large circle corresponding to the target emissions and a small circle coming from the
projectile, which is detected at 95 AMeV and still slightly visible at 300 AMeV. The target emis-
sions of lithium fragments are centered around the target rapidity at y=0 and have a rapidity
range approximately from y=-0.2 to y=0.3 for all incident energies.

At high incident energies as 600, 1000, and 1800 AMeV, the main beam, vetoed with the
halo detectors, was accompanied during the experiment by a component of beam particles that
arrived at large distance from the beam axis, as it is sketched in Fig. 2.8. Fig. 2.7 presents the
‘good’ (which means not detected by the halo detector) event distribution and the ‘halo’ event
distribution as functions of the charged particle multiplicity Nc. The two main features of the
‘halo’ events is their low multiplicity and their increasing amount with the increasing incident
energy. The ‘halo’ presents two components for the energies 95 to 1000 AMeV. The high energy
component comes from the events produced by projectiles hiting the thin inner ring of 1mm
radius of the halo detector and the target without touching the INDRA structure. These events
are vetoed by the halo detectors and rejected from the event selection.
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Figure 2.8: Schematical setup of the INDRA detector with a view of the stray particles punching through
the halo detector or directly the backward rings of the detector.

The beam component coming from scatterings in the beam line is not detected by the halo
detectors as it touches mainly the backward rings of INDRA beyond the aluminium structure of
the halo detectors (see Fig. 2.8). These stray particles may react with the technical structure or
the telescopes themselves. It leads to particle emissions with a low multiplicity and an increasing
rate with the increasing beam energy. These particles are light particles and light ions as lithium
fragments.
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This background is visible in the rapidity spectra of lithium fragments for a carbon beam at
the incident energy of 1000 AMeV, as shown in the Fig. 2.9. The left panel corresponds to reac-
tions with a gold target and the right panel to reactions without target. The fifth plot (bottom
left) of the both panels presents the peripheral collisions with the reduced impact parameter
b/b0=0.8-1.0. The reduced impact parameter is here determined from the charged particle mul-
tiplicity according to the selection method explained in the next chapter 4. These plots present
in both cases a large circle accompanied by a narrower one for the reactions with a gold target.
The large circle corresponds to stray particle effects while the narrow circle comes from reactions
in the target.
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Figure 2.9: Rapidity spectra of lithium for an incident energy of 1000 AMeV as a function of the reduced
impact parameter from central collisions (0.0-0.2) to peripheral reactions (0.8-1.0). The inclusive spectra
are also presented. The left panel corresponds to reactions with a Au target and the right panel to
reactions without target.

The case of the lithium fragments allows an easy analysis by cutting the higher energy part
of the particles with an appropriate choice of the energy limit. This method will be used for
the light ions in the analysis of fragment emission (see chapter 6). For the protons, produced
in large quantities by reactions with and without target, the analysis of the most peripheral
collisions needs a correction. It can be done by subtraction of the ‘no target’ spectra from the
‘good’ spectra with the application of a normalization factor, i.e. the ratio of event numbers
counted in the halo detectors in both cases. This technique is usually applied in spectroscopy
[Jon01, Jon02]. Fig. 2.10 presents original and corrected proton kinetic energy spectra for very
peripheral collisions at 3o ≤ θlab ≤ 176o. The correction lowers the spectra yield by maximum
a factor 5 for the backward angles for a kinetic energy close to 100 MeV. The results involving
light particles and pions presented in the chapters 5 and 7 are corrected following the procedure
indicated above.
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Chapter 3

Identification and Calibration

This chapter is devoted to the description of the different methods utilised in the INDRA@GSI
data reduction to obtain the two most important experimental informations : the particle iden-
tification and the energy calibration.

3.1 Identification

Identification in ionisation chambers and silicons

40000 2000

4
0
0
0

0

2
0
0
0

CsI F

S
i
 
H
G

Figure 3.1: ∆E-E matrix
(in channels) obtained with
a SiLi-CsI telescope at back-
ward angles, illustrating the
achieved isotopic resolution up
to lithium. The label ‘Si HG’
corresponds to the high gain
channels of the silicon and the
label ‘CsI F’ to the fast gate of
the scintillator [Sai02].
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The identification of particles losing their energy and/or stopping in the first stages of the
INDRA telescopes is done following the Bethe-Bloch formula [Bet30, Leo87]:

∆E

∆x
� C1

AZ2

E
log

C2E

A
(3.1)

with the energy loss ∆E, the incident energy E, the particle charge and mass Z and A, the
detector thickness ∆x, and the material constants C1, C2.

Knowing its energy loss and incident energy, the charge and mass of a particle punching
through a material can be deduced. On a bidimensional diagram ∆E vs E as Fig. 3.1, each
curved ‘line’ corresponds to a mass and each line group in bands to a charge. In the case of the
ionisation chambers, only a charge resolution is available. By this ∆E−E method, the fragments
up to the tin (Z=50) are identified in the ionisation chambers and a part of the light particles
and ions, with an isotopic resolution until the boron (Z=5), in the silicons.

Identification in Scintillators

The 336 scintillators of Cesium Iodide of the INDRA detector are devoted to the identification
of the light isotopes, up to the charge Z=4.

A particle passing through a scintillator may excite its molecular levels. The deexcitation
of these levels corresponds to the emission of a luminous radiation. In the case of the CsI(Tl)
crystals, this radiation is separated in two different time constants (Fig. 3.2). The producted
light amount h(t) can be approximated by two exponential components :

h(t) = h1.exp
−t

τ1
+ h2.exp

−t

τ2
(3.2)

with the life time τi (τ1 = 0.4 − 0.7µs, τ2 = 7µs) and the intensity of the component hi.

The total signal is the sum of these two components. The particle identification is done
by discrimination of this signal: it is integrated on two time gates, the first from 0 to 390 ns
(fast gate), the second from 1590 to 3090 ns (slow gate), as shown in the left panel of Fig.3.2.
The combination of these two signals results in a fan-shaped matrix where each straight line
corresponds to an isotope (right panel of Fig. 3.2). The identification is done by coding lines
on the ‘lines’ formed by the particles themselves. Fig. 3.3 (left panel) presents, for instance,
from the right to the left side, a first line corresponding to the neutral particles (neutrons and
gammas which can not be disentangled), the three following are the three hydrogen isotopes
coming before the 3He, 4He, 6He, and double 4He lines. One may remark that the identifi-
cation in scintillators can become difficult due to imperfections of the crystal. In the fifth ring
(10o ≤ θlab ≤ 14o), for example, some modules show winding hydrogen lines. The CsI detec-
tors provide an isotopic resolution up to the beryllium (Z=4), shown in the right panel of Fig. 3.3.
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Figure 3.2: Left panel : CsI signal in Volts as a function of time. The ’R’ part corresponds to the fast
gate, and the ’L’ part to the slow one. Right panel : CsI(fast) versus CsI(slow) identification matrix (in
channels) obtained with the two CsI signals in one telescope at 35o ≤ θlab ≤ 45o [Sai02].
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collection of C+Au and C+Sn reactions at all studied energies in the same telescope[Sai02].
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General identification features of the C+Au experiment.

The identification in several stages due to the telescope configuration of the INDRA detector
gives a good isotopic identification of the light particles and ions. As exhibited in the left panel of
Fig. 3.4, the protons, deuterons, tritons, 3He’s, and 4He’s are well identified in the whole detector
from θlab = 2o to θlab = 176o. Due to the reaction dynamics, the heavier ions are identified at
forward angles (θlab < 90o). The main isotope of each species is identified on a wider angular
range than the other isotopes. In this picture, the 8Be’s correspond to double 4He’s. These 4He’s
punching through the detectors in coincidence are about 50% from the products of 8Be decay
and 50% from accidental coincidences of 4He’s [Stu99]. The charge identification presented in
the right panel of Fig. 3.4 points out as well a forward emission of the heaviest fragments. The
ions are identified in the whole angular coverage until the colbalt (Z=27).
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Figure 3.4: Isotopic (left panel) and charge (right panel) distributions in the INDRA detector as function
of the polar angle θlab for the reaction C+Au at 600 AMeV.

3.2 Calibration

In this thesis, only the calibration methods for the CsI(Tl) scintillator crystals and the Si-Si-
CsI(Tl) calibration telescopes are reported [Luk02].

Scintillators in forward rings (2o ≤ θlab ≤ 45o)

For the INDRA@GSI campaign, the reaction Xe+Sn at 50 AMeV was measured with the in-
tention to use the existing calibration of the same reaction from the first INDRA campaign in
GANIL. In this first campaign, the energies of Z=1,2 particles measured in CsI detectors of
rings 2 to 9 (3o ≤ θlab ≤ 45o) were calibrated using the elastically scattered secondary beams
of those particles [Pou95, Mar95]. The calibration was based on the fast (‘rapide’) signal of the
CsI detectors and a phenomenological formula relating this fast signal and the energy [Mar95].
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The fragments with Z ≥ 3 measured in CsI detectors of rings 2 to 9 were calibrated using the
∆E in Si300µm and range-energy tables [Hub90]. The rings 10 to 17 were calibrated using the
calibration telescopes, so-called ‘étalons’. The calibration of these telescopes will be treated in
the following of the section.
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Figure 3.5: 1st and 4th campaign global CsI r spectra for ring 2 for the system Xe+Sn at 50 AMeV.
The spectra contain all the particles detected. the increase at low channels corresponds to Z=1,2. The
spectrum of the module 1 are at the top middle, the spectra are organised following the clock way [Luk02].

In order to use the first campaign calibration for Z=1,2 in the rings 2 to 9, the global fast
signal spectra of the INDRA@GSI campaign are fitted to those of the first campaign as it is
shown in Fig. 3.5. The gain factors obtained from the fitting procedure make possible the use
of the first campaign calibration parameters directly to INDRA@GSI. This ‘scaled calibration’
constitutes the reference to obtain the calibration based on the relation between the total light
and the energy loss [Par00]:

L = a1E0[1 − a2
AZ2

E0
ln(1 +

1
AZ2

a2E0

)] + a4a3AZ2ln(1 +
E0

Eδ + a2AZ2
)

with the light L, the particle energy E0, the particle mass and charge A,Z, the inverse of
the gain adjusted for each module using the first campaign data a1, the Birks parameter, which
varies from one module to an other a2, the δ-ray production energy threshold Eδ = a3E0, and
the fraction of deposited energy a4.
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This formula, so-called ‘Pârlog-Tabacaru’ formula, has a big advantage as compared to the
phenomenological formula of the first campaign because, in principle, it enables to extrapolate
the calibration of Z=1,2 also for IMF’s (3 ≤ Z ≤ 30) and heavy fragments. The calibration of
energies of fragments using total light improves considerably the energy resolution of energetic
fragments as compared to the method based on the energy loss in Si300µm and the range-energy
tables.
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Figure 3.6: Fit 3rd-4th campaigns: the parameters a2, a3, and a4 are adjusted in order to correspond
to a minimum in the distribution (on the χ2 matrix: the intersection of the two straight lines) with the
standard guess of a2 = 0.39. In this case, a3 = 1.1 and a4 = 0.21 [Luk02].

The parameters a3 and a4 of the ‘Pârlog-Tabacaru’ formula are found using the third INDRA
campaign calibration data [Chb01]: energies of elastic peaks of isotopically resolved Z=1 to 6
species and corresponding values of the total light. Fig. 3.6 presents the result of a grid search
for the parameter a3 and a4 for modules of the rings 2 to 6. The minimum of the mean χ2 is
used as a ‘standard’ one in case it was not known from the previous campaigns. The parameter
a1 is adjusted for each module of the rings 2 to 9 by fitting the energy spectra of p, d, t and
4He particles calibrated using the ‘Pârlog-Tabacaru’ formula to those calibrated by the ‘scaled
calibration’. Five different sets of a1 parameters are necessary for p, d, t, 3He, and 4He and
heavier fragments even though a2 should take care of the mass and charge dependence. The ring
1 is calibrated using the spectra of the ring 2.

In order to check the predictive power of the ‘Pârlog-Tabacaru’ formula for heavier fragments,
the theoretical ∆E − E lines generated using the formula, the Si300µm calibration, and the
Hubert range-energy tables for consecutive atomic numbers, are compared to the experimental
ones. The left panel of Fig. 3.7 shows the generated lines (dotted lines) superimposed on the
identification lines (solid lines) for charges up to Z=54 in steps of ∆Z = 2. The right panel
presents the ‘theoretical’ ∆E −E lines on top of the experimental data (Xe+Sn reactions at 50
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to 250 AMeV). The lines connecting the big solid circles correspond to the fragments of given Z
with the beam energy per nucleon. As it can be seen, the ‘Pârlog-Tabacaru’ formula reproduces
well the experimental data up to Z=20-25. For heavier fragments, its predictive power gets worse.
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Figure 3.7: First check of calibration with the Pârlog formula with Si(300 µm)-CsI matrices. The silicon
coordinate is in channel and the CsI one in total light according to Pârlog formula. The left panel is a
comparison between identification (full lines) and calibration (dotted lines). The right panel compares
the calibration lines to the Xe+Sn data at 50, 65, 80, 100, 150 and 250 AMeV [Luk02].
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Figure 3.8: The corrected parameters a3 and a4 as
functions of the charge Z. The points correspond to
data (Xe+Sn at 50 AMeV) and the full line to the
parametrization of a3 and a4. The formulae of this
parametrization are given in the respective panel
[Luk02].
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In order to improve the energy calibration of heavier fragments, it is proposed to make the
parameters a3 and a4 dependent of Z (Fig. 3.8), using the following phenomenological formulae:

a3 = 1.1 − p30

1 + exp(−(2−p31)
p32

) +
p30

1 + exp(−(Z−p31)
p32

)

a4 = 1.1 − p40

1 + exp(−(2−p41)
p42

) +
p40

1 + exp(−(Z−p41)
p42

)

with p30 = 7.17, p31 = 17, p32 = 7.2, p40 = 0.27, p41 = 8.57, and p42 = 7.7.

The final fit, with a3 and a4 as functions of Z, is presented in the figure 3.9, also for the
Xe+Sn from 50 to 250 AMeV beam energy. The calibration and identification lines show a much
better agreement at high Z. As the reference system was Xe+Sn at 50 AMeV, the other systems
and energies were calibrated by scaling to the reference spectra. This scaling was performed
separately for each ring from ring 2 to 9. The other systems and energies studied during the
INDRA@GSI campaign are calibrated using the homothetie scaling of the fast-low CsI spectra
and laser corrections.
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Figure 3.9: Final check of the calibration with the Pârlog formula, after parametrization of a3 and a4 as
functions of Z. The left panel is a comparison between identification (full lines) and calibration (dotted
lines). The right panel compares the calibration lines to the Xe+Sn data at 50, 65, 80, 100, 150 and 250
AMeV [Luk02].
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Scintillators and calibration silicons in backward rings (45o ≤ θlab ≤ 176o)

For the rings 10 to 17 (45o ≤ θlab ≤ 176o), the calibration was done using the Si-Si-CsI(Tl)
calibration telescopes.

Calibration of Si75 and Si(Li) detectors
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Figure 3.10: Volt→MeV factors determined from the α and ‘Thoron’ sources (see text for legend). Each
panel corresponds to one ring, from ring 10 (top left) to ring 17 (bottom right). The factors for high (GG)
and low (PG) gains are indicated in each panel [Luk02].

The energy calibration of Si75 detectors was carried out with two different sources: a ‘Thoron’
source with two peaks given by the decay products of 212Pb (212Bi 6.06 MeV, 212Po 8.78 MeV)
and a alpha source with three peaks (239Pu 5.15 MeV, 241Am 5.48 MeV, 244Cm 5.79 MeV). Fig.
3.10 shows the factors Volt→MeV determined with the two α sources for the eight Si75 detectors.
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The factors channel→Volt were found out with the so-called automate runs. During these special
runs, the amplitude of the pulser was modified by steps in order to check the linearity of the
silicon detectors and the associated electronics. The calibration runs were performed with and
without gas, that is why there are different energy losses and positions of peaks for the same
source. There are also superimposed results of high (GG) and low (PG) gains. The first three
groups of symbols at lowest energies correspond to three peak source measurements made with
gas. The circles at low energies for rings 10-12 correspond to measurements with 3 peak source
without gas. The pairs of symbols at high energies correspond to measurements done with the
‘thoron’ source with or without gas. Only the measurements without gas made with the use of
the ‘thoron’ source were taken to calibrate the SI75 (big circles and stars) to avoid additional
uncertainties due to energy loss and straggling in the gas and to avoid non-linearities at low
energies. The thick lines are the results of the fit to the measurements with the ‘thoron’ source
with and without gas. The energy losses in the mylar foils of the chambers were taken into
account.
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Figure 3.11: Thickness of the silicon Si75 for each ring, determined from α source runs. One compares
in these panels the thickness values measured in previous campaigns when they exist (thick full lines),
the new values (thin full lines), and the values used to calculate the new values coming from low (PG,
empty circles) and high (GG, full circles) gain with the use of VEDA energy loss tables. The thickness
values are indicated in each panel [Luk02].

The Si75 thickness values were resolved from the α source runs. The punch-through energies
for species from the protons to the oxygens were determined from their channel position and
the α source calibration. These energies were used to resolve the particle range using the VEDA
energy loss tables. The thicknesses deduced from these ranges were compared to values from
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previous campaigns, as it is shown in Fig. 3.11, for low and high gain (‘petit’ gain (PG) and
‘grand’ gain (GG)). The Si75 thickness values for the INDRA@GSI campaign are slightly higher
than for previous experiments, except at 142o ≤ θlab ≤ 176o. This may be due to the evolution of
the silicons with the time. The following step of the calibration process was the SiLi calibration.
The SiLi thickness was taken from previous INDRA campaign values [Gen99].

CsI Calibration

The first stage of CsI calibration was the construction of ‘residual‘ reference spectra for Z=1,2
particles punching through Si(Li), knowing their residual energies. The fits used also the Pârlog
formula (see section 3.2). A double check with Si(Li) versus CsI(light) matrices was needed to
verify the quality of the calibration. This last point permitted the production of ‘full’ reference
spectra of particles that do not hit the silicons. The calibration of the other modules of each ring
was realized by scaling to ”full” reference spectra. For the other energies for the same system of
Xe+Sn, the calibration was achieved with laser correction. For the other systems, Au+Au and
C+Au, it was necessary to apply homothetie factors coming from a scale of identification maps.

A control of the calibration for the INDRA@GSI campaign is performed with the energy
scale calibration of the CsI crystals for 14o ≤ θlab ≤ 88o using elastic and inelastic C+(CH2)n

scattering at Ebeam= 30 AMeV. The gain parameter of the calibrationis then obtained by fit-
ting the proton total charge spectra to the spectra predicted with Monte-Carlo simulations. At
this angular range, for the protons, this second method of calibration is in agreement with the
‘Xe+Sn’ calibration within 4% [Trz02].

The data reduction operated via the identification and the calibration was the first step of
the analysis. It will allow us in the next chapter to study the question of the centrality selection.

More informations about the identification methods in the different detectors of INDRA can
be found, concerning ionisation chambers-silicons in the rings 2 to 9, in the PhD thesis of L.
Nalpas, J.D. Frankland, and S. Hudan [Nal97, Fra98, Hud01]; for the ionisation chambers-cesium
iodides, in the PhD thesis of L. Nalpas and N. Bellaize [Nal97, Bel00]; for the CsI detectors,
forward rings, in the PhD thesis of A. Le Fèvre [Lef97], and the backward rings, in the PhD
thesis of E. Genouin-Duhamel, N. Le Neindre, A. Saija [Gen99, Len99, Sai02].

Complementary presentations of calibration methods are given, for the ionisation chambers-
silicons, in the PhD thesis of L. Nalpas [Nal97]; for the ionisation chambers-CsI detectors, in the
PhD thesis of L. Nalpas and N. Bellaize [Nal97, Bel00]; for the CsI detectors, forward rings, in
the PhD thesis of F. Lavaud [Lav01], and backward rings, in the PhD thesis of N. Marie and E.
Genouin-Duhamel [Mar95, Gen99].
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Chapter 4

Centrality Selection

In most experiments, the information about the centrality of the collision is extracted from
quantities which relate to the collision geometry via simple intuitive pictures. Many impact pa-
rameter filters represent some measure of the ‘violence’ of the reaction which, in turn, is assumed
to be related to the collision geometry. Common impact parameter filters are based upon the
measured multiplicity of charged particles, the transverse energy, or the summed charge of par-
ticles emitted at intermediate rapidity [Sch78, Rit88, Ogi89, Cav90]. For collisions with incident
energies of a few hundred MeV per nucleon (until 1 AGeV), the summed charged, Zbound, of
particles with atomic number Z ≥ 2 [Hub91] has also been used. This quantity is the comple-
ment of the combined p, d, and t multiplicity.

Various more sophisticated methods have been developed in the last years and applied to
data from different INDRA experiments like the Principal Component Analysis [Bel00, Lav01],
the neuronal network [Bou01] or the discrimination of single-source events [Mas99, Des00].

A priori, it is unclear whether these various techniques select similar or equivalent impact
parameters or one technique provides superior resolution as compared to another. At low and
intermediate energies, cross-calibrations have been performed between the different impact pa-
rameter filters [Gal86, Tsa89, Pha92].

In this chapter, we will continue this study at relativistic energies. In this aim, we will follow
a similar analysis than the one of L. Phair and coworkers [Pha92] and explore first the relation
between impact parameters based on the charged particle multiplicity NC , the multiplicity of
hydrogen isotopes N1, the total transverse kinetic energy of detected charged particles Et, and
the mid-rapidity summed charge Zy. In a such experiment as the INDRA@GSI, in which as
well symmetric and asymmetric systems were studied on a wide range of beam energy, a second
question emerges: the sensitivity of these four quantities to system symmetry and incident energy.
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4.1 Definition of impact parameter filters

In the following, we define some quantities:

1) The charged particle multiplicity NC . This quantity includes all charged particles detected
by the INDRA detector. Multihits in a single detector module are counted as single hits. The
number NC is therefore equal to the number of detectors in which at least one charged particle
is detected in a given event.

2) The identified hydrogen multiplicity N1. This quantity is defined as the number of detectors
in which a Z=1 particle is identified for a given event.
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Figure 4.1: Correlations between
charged particle multiplicity NC ,
identified hydrogen multiplicity N1,
transverse energy Et, and interme-
diate rapidity charge Zy observed
for C+Au collisions at 95 AMeV.

3) The total transverse kinetic energy of identified particles Et. This quantity is defined as
[Tsa91]:

Et =
∑

i

{mi ∗
√

1 + (pisinθi)2/m2
i − 1} (4.1)

with the kinetic energy Ei, the momentum pi, the mass mi, and the emission angle θi of the
particle i with respect to the beam axis.

In the following chapter, the total transverse kinetic energy of all identified particles is used
in order to perform a study in the same way as L. Phair and coworkers [Pha92]. In previous
studies of the INDRA collaboration, the total transverse kinetic energy of hydrogen and helium
isotopes, Et12, is prefered due to the energy thresholds of the detector for heavier fragments
[Luk97, Boc00, Met00, Pla00].



Definition of impact parameter filters 47

4) The mid-rapidity summed charge Zy. This quantity is defined [Ogi89] as the summed
charge of all identified particles of rapidity y with:

0.25ycm ≤ y ≤ 0.75yproj + 0.25ycm

Here, quantities are defined in the laboratory frame of reference. ycm and yproj denote the
rapidities of the total center-of-mass system and of the projectile, respectively. These limits in
rapidity are used in this way by L. Phair and coworkers in order to select the mid-rapidity
emissions. The rapidity y of a particle is defined [Gol78] as:

y =
1
2
ln

Etot + p//

Etot − p//
= tanh−1(β//) (4.2)

with the total energy of the particle Etot, the longitudinal impulsion p//, and the longitudinal
velocity β//.

Fig. 4.1 shows the measured correlations between the quantities NC , N1, Et, and Zy. The four
quantities are strongly correlated as an increase in the value of one observable is accompanied by
an increase in the value of the other three observables. From this observation, one may already
conclude that all four quantities are suitable for impact parameter selection, or none: as it is
sketched in Fig. 4.2, the global variables can be correlated through the impact parameter or
directly. If they are correlated directly, the comparison of the different methods will just let
appear the so-called autocorrelation between variables and not their correlation to the impact
parameter.

br

NC Et
AUTOCORRELATION?

CORRELATION?

Figure 4.2: Possible correlations between global variables and reduced impact parameter.

In order to provide an approximate scale for the impact parameter, we adopt the geometrical
prescription of C. Cavata and coworkers [Cav90]. For each of the quantities NC , N1, Et, and
Zy, we assume a monotonic relationship to the impact parameter and define the reduced impact
parameter scale by:

b(X)/bmax = br(X) =

{∫ ∞

X

dP (X ′)
dX ′ dX ′

}1/2

(4.3)

with the normalized probability distribution dP(X)/dX for the measured quantity X = NC ,
N1, Et, Zy, and the maximum impact parameter bmax for which particles are detected in INDRA.

In the following, we will use the reduced impact parameter scale br which ranges from br=1
for peripheral collisions to br=0 for central collisions.
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4.2 Model predictions

The predictions of the transport model BQMD (Bohnet Quantum Molecular Dynamics, see Ap-
pendix A.3) are processed through a simple geometrical INDRA filter (constant θ bin for each
ring and constant φ bin for each module), taking into account the energy threshold E > 5MeV.
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Figure 4.3: BQMD predic-
tions for C+Au reactions at
95 AMeV for the global vari-
ables N1, Et, Zy, and Zbound

as functions of the reduced im-
pact parameter br. Selection of
the carbon projectile by a cut
in rapidity y ≥ 0.75.

As demonstrated in Fig. 4.3, 4.4, and 4.5, the sensitivity of the global variables N1, Et,
Zy, and Zbound (

∑
Z with Z ≥ 2) to the reduced impact parameter br is increasing with the

symmetry of the system and the incident energy. The distributions of these four variables are
narrower for Xe+Sn collisions at 50 AMeV than for C+Au at 95 AMeV. The correlation is
stronger for the most symmetric system even if the beam energy for Xe+Sn is smaller. Similarly,
the correlation is more pronounced for the C+Au reactions at 600 AMeV than at 95 AMeV.
The strength of the correlation between global variables and impact parameter depends on the
produced number of particles: a large number of particles allows a finer determination of br

since the role of particle number fluctuations is reduced. As a consequence, the large multiplic-
ity range leads also to relatively broad distributions in energy or charge. In Xe+Sn collisions at
50 AMeV, due to the number of nucleons in each nucleus, a lot of particles are emitted, also in
C+Au reactions at 600 AMeV, this time because of the higher incident energy. The produced
number of particles depends also on the geometry of the collision. This number will increase with
the centrality of the collision as more and more nucleons are involved in the participating region.

In the next sections, we will expand the study of global variables to experimental data. As
the model predicts a broad distribution for C+Au collisions at 95 AMeV, the choice of the best
global variable for this asymmetric system at quite low beam energy seems a bit difficult.
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Figure 4.4: BQMD predic-
tions for C+Au reactions at
600 AMeV for the global vari-
ables N1, Et, Zy, and Zbound

as functions of the reduced im-
pact parameter br. Selection of
the carbon projectile by a cut
in rapidity y ≥ 0.75.
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Figure 4.5: BQMD predic-
tions for Xe+Sn reactions at
50 AMeV for the global vari-
ables N1, Et, Zy, and Zbound

as functions of the reduced
impact parameter br. Selec-
tion of the xenon projectile by
a cut in rapidity y ≥ 0.75.
At 50 AMeV, the Xe+Sn sys-
tem does not reach the vapor-
isation regime and produces
many fragments in central col-
lisions.
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4.3 Impact parameter sensitivity

In order to investigate the relation between impact parameter scales extracted via the equa-
tion 4.3 from the various measured observables, we have set narrow gates on parameters br(X),
defined by means of an observable X, and determined the conditional distributions of impact
parameters br(Y ), constructed from different observables Y (X,Y = NC , N1, Et, Zy Y �= X ).
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Figure 4.6: Conditional impact parameter distributions for C+Au collisions at 95 AMeV for the global
variables N1, Zy, and Et. The distributions going from the left to the right and from the front to the
back of the pictures correspond to five bins of the reduced impact parameter determined with Nc, from
the most central (0.0-0.2) to the most peripheral (0.8-1.0).
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Fig. 4.6 presents the conditional impact parameter distributions of N1, Zy, and Et for
C+Au reactions at 95 AMeV for five gates on br(NC). These five gates were chosen to be from
br=0.0 to br=1.0. These conditions on NC give wide distributions as for br(N1) � 0.0 − 0.6 for
br(NC) = 0.0−0.2. Moreover the distributions are not well separated, suggesting, as predicted by
BQMD calculations, a weak correlation between the four global variables for C+Au at 95 AMeV.
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Figure 4.7: Schematic view of
the rings 6 and 7 with mod-
ule arrangement. The module
numbers are indicated in bold
face, the even number modules
are dashed, the odd number
modules white.

Conditional impact-parameter distributions for very central collisions (br(X) = 0.0 − 0.1)
are presented in Fig. 4.8, 4.9, and 4.10 for the three studied systems : C+Au at 95 and 600
AMeV, and Xe+Sn at 50 AMeV. Left- and right-hand panels show distributions extracted from
all the data and for even-odd separated data, respectively. In order to avoid autocorrelations
(like between N1 and NC), we separate the data in two groups in the following way: all the
modules of INDRA with an even number are in a first group denoted ‘even’ and, in a second
one denoted ‘odd’, all the modules with an odd number (see Fig. 4.7). In this way, the data
are cut in two equal parts with the same angular distribution and the possible autocorrelations
between the global variables are destroyed. The gates are applied on one group (odd) and the
distribution of the other group of data (even) is observed.

For the C+Au reactions at 95 AMeV, as the number of hydrogens N1 is part of the sum over
the charged particles NC , there is a strong autocorrelation between both variables for the full
data (first and second left panels, from the top of the Fig. 4.8). Zy presents also a correlation
with NC (first and third left panels, from the top), but Et is not correlated with any of the three
other variables as demonstrated by the broad distributions of the fourth left panel. Moreover,
the even-odd method gives very broad distributions with a mean value of br � 0.6 for gates at
br < 0.1. This result confirms the previous observation with gates on NC only but from central
to peripheral collisions (see Fig. 4.6).



52 Centrality Selection

0

500

1000

1500

2000

2500

3000

3500

4000

0

500

1000

1500

2000

2500

3000

3500

0

500

1000

1500

2000

2500

3000

3500

0.0 0.2 0.4 0.6 0.8
0

500

1000

1500

2000

2500

3000

3500

0

500

1000

1500

2000

2500

3000

3500

4000

0

500

1000

1500

2000

2500

3000

3500

0

500

1000

1500

2000

2500

3000

3500

0.0 0.2 0.4 0.6 0.8 1.0
0

500

1000

1500

2000

2500

3000

3500

 

 

 

 

b
r
(N

c
) : 

   b
r
(N

1
) < 0.1

   b
r
(Z

y
) < 0.1

   b
r
(E

t
) < 0.1

 

 

 

b
r
(N

1
) : 

   b
r
(N

c
) < 0.1

   b
r
(Z

y
) < 0.1

   b
r
(E

t
) < 0.1

d
P
(
b r)
/
d
b r 
 
(
a
.
u
.
)

 

 

 

b
r
(Z

y
) : 

   b
r
(N

c
) < 0.1

   b
r
(N

1
) < 0.1

   b
r
(E

t
) < 0.1

b
r

 

 

 

b
r
(E

t
) : 

   b
r
(N

c
) < 0.1

   b
r
(N

1
) < 0.1

   b
r
(Z

y
) < 0.1

 

 

 

b
r
(N

c
 even) : 

   b
r
(N

1
 odd) < 0.1

   b
r
(Z

y
 odd) < 0.1

   b
r
(E

t
 odd) < 0.1

 

 

b
r
(N

1
 even) : 

   b
r
(N

c
 odd) < 0.1

   b
r
(Z

y
 odd) < 0.1

   b
r
(E

t
 odd) < 0.1

 

 

b
r
(Z

y
 even) :

   b
r
(N

c
 odd) < 0.1

   b
r
(N

1
 odd) < 0.1

   b
r
(E

t
 odd) < 0.1

 

 

b
r
(E

t
 even) :

   b
r
(N

c
 odd) < 0.1

   b
r
(N

1
 odd) < 0.1

   b
r
(Z

y
 odd) < 0.1

Figure 4.8: Conditional impact parameter distributions br(X), with X = NC , N1, Zy, Et, for central
C+Au collisions at 95 AMeV. Full lines correspond to br(NC) < 0.1, dashed lines to br(N1) < 0.1, dotted
lines to br(Zy) < 0.1, and dashed-dotted lines to br(Et) < 0.1.
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Figure 4.9: Conditional impact parameter distributions br(X), with X = NC , N1, Zy, Et, for central
C+Au collisions at 600 AMeV. Full lines correspond to br(NC) < 0.1, dashed lines to br(N1) < 0.1,
dotted lines to br(Zy) < 0.1, and dashed-dotted lines to br(Et) < 0.1.
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Figure 4.10: Conditional impact parameter distributions br(X), with X = NC , N1, Zy, Et, for central
Xe+Sn collisions at 50 AMeV. Full lines correspond to br(NC) < 0.1, dashed lines to br(N1) < 0.1, dotted
lines to br(Zy) < 0.1, and dashed-dotted lines to br(Et) < 0.1.
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In the case of C+Au at 95 AMeV, one has to consider that the low multiplicity introduces
large fluctuations when one divides up the event in two subevents with even and odd detector
numbers. The weak correlations could only be partly explained by this effect. Another effect are
correlations introduced by dividing the events. The two sets of data giving NCeven and NCodd

present a correlation shown in Fig. 4.11 (left panel) for the reaction C+Au at 600 AMeV. In this
case, one particle contributing to NCeven can not contribute to NCodd. This correlation, cut on
NCeven + NCodd = 16 has a binomial distribution (Fig. 4.11, right panel) with 16 tries and equal
probabilities with to have a particle in an ‘even’ module or an ‘odd’ module. The distribution
has double width because the difference NCeven − NCodd is displayed, σ =

√
NCeven + NCodd,

and is well approximated by a Gaussian.

Figure 4.11: Left panel: correlation between NCeven and NCodd for C+Au reactions at 600 AMeV.
Right panel: a cut at NCeven + NCodd = 16 in the correlation gives a gaussian distribution with σ =√

NCeven + NCodd.

The conditional impact parameter distributions are much narrower for the system C+Au at
600 AMeV (see Fig. 4.9). All the variables are well correlated for full data (observed br � 0.0−0.3,
left panels) and also for even-odd data (observed br � 0.0 − 0.5, right panels). For the Xe+Sn
reactions at 50 AMeV, the correlations are not so strong as for C+Au at 600 AMeV. Fig. 4.10
presents these distributions for full data (left panels), where the autocorrelation N1 − NC and
the correlation between NC and Et (first and fourth left panels, from the top) are visible. The
odd-even test gives broad distributions with a mean value of br � 0.45 which indicate a strong
correlation with central collisions as in the case of the system C+Au at 95 AMeV.

The test on even and odd modules is extended from central to peripheral collisions and
the mean values of the observed conditional impact parameter distributions with gates on <
br(NC) > are presented in Fig. 4.12, for the three studied systems, for all modules in the right
panels and for even and odd modules in the left panels. The distributions for all modules are
very close to the perfect correclation for the three systems. However, the C+Au at 95 AMeV and
Xe+Sn at 50 AMeV reduced impact parameters are slightly higher for central collisions than the



56 Centrality Selection

ones of C+Au at 600 AMeV. The weak correlations of the global variables for C+Au at 95 AMeV
(top panels) is confirmed for all the impact parameter gates: the distribution of < br(X) >, with
X = N1, Zy, Et, as a function of < br(NC) > is almost flat. The same fluctuation effects observed
at very central collisions are visible for almost all impact parameters. To divide up the event into
subevents modify essentially the central and peripheral bins and keeps semi-peripheral reduced
impact parameters very close to teh perfect correlation. The mean values of br(NC) for C+Au
collisions at 600 AMeV are very close to the perfect correlation symbolised by the diagonal line.
In the case of the reaction Xe+Sn at 50 AMeV, this holds only for the peripheral collisions
(br(NC) > 0.4).
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Figure 4.12: Left panels: mean measured impact parameter for all modules (< br(obs) >) as a function
of gates in impact parameter br(NC) for all modules (< br(cut) >). Right panels: mean measured impact
parameter for even modules (< br(obs) >) as a function of gates in impact parameter br(NC) for odd
modules (< br(cut) >). The diagonal lines correspond to the perfect correlation.
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4.4 Choice of a global variable.

In this chapter, we have studied the correlations between four global variables: the charged par-
ticle multiplicity NC , the identified hydrogen multiplicity N1, the mid-rapidity summed charge
Zy, and the total transverse kinetic energy of identified particles Et. We have pointed out the
increase of these correlations with the symmetry of the system and the incident energy. We tried
to study autocorrelations between different variables by dividing the detector in two independent
sets of detectors.

As our goal is to analyse the data coming from the reactions of C+Au at beam energies from
95 to 1800 AMeV, the system at 600 AMeV can be considered as representative of this set of
data and, as the four global variables show similar behaviour and a good correlation for this
system and this energy, we can choose any of these variables to select the impact parameter. In
the following chapters, the impact parameter gates will be calculated from the charged particle
multiplicity NC that has the advantage to be independent of the calibration. Moreover, the
BQMD calculations for C+Au at 600 AMeV predict NC as the best variable with the narrowest
width of the distribution.

Fig. 4.8 to 4.10 show that the resolution for any of these three different systems is not suffi-
cient to make useful a large number of impact parameter. If we choose a small number of bins,
we can miss evolutions with centrality that may occur inside a bin. Moreover, for the asymmet-
ric system C+Au, there is total overlap of the nuclei of carbon and gold at a relative impact
parameter br = 0.4. This leads us to the choice of five bins of impact parameter for the following
of the study, as shown in Fig. 4.13.
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Chapter 5

Protons,
Manifestation of the Early Source

The protons, as light particles, have the peculiarity of being emitted at each stage of a heavy-
ion reaction. The initial fireball, preequilibrium, evaporation, and other secondary decay modes,
all contain a strong proton component. This chapter is focused on identifying these sources and
their contributions to the observed proton yields and on testing dynamical and statistical models
developed for their description.

5.1 Protons in INDRA
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Figure 5.1: Left panel: matrix SiLi gg (high gain) versus CsI r (fast component) for the ring 15 (126o ≤
θlab ≤ 142o) for the reaction C+Au at the incident energy of 1000 AMeV. One can observe, from top to
bottom, curved lines corresponding to the tritons (t), the deuterons (d), and the protons. Protons are
identified by a gate drawn around the stopped and punch-through proton line. Right panel: projection
of the channel range in CsI r (vertical dashed lines in the left panel) corresponding to the proton kinetic
energy Ep = 50 ± 3 MeV in SiLi gg (horizontal dashed line in the left panel).
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In the INDRA multidetector, the protons are identified in silicon-CsI ∆E-E maps and in
the CsI crystals by pulse-shape analysis. In order to determine the quality of the identification,
we compare in this section three methods to identify the protons: in the CsI’s alone, in the
SiLi-CsI telescope by a simple gate drawn around the stopped and punched-through proton line,
as displayed in the left panel of Fig. 5.1 for C+Au at 1000 AMeV and 126o ≤ θlab ≤ 142o (the
gate is stopped before the pion line), and in the ‘etalon’ calibration telescopes (Si75-SiLi-CsI)
at backward angles (45o ≤ θlab ≤ 176o).

In the second case, the proton calibration is done using the energy loss in the SiLi detector
and range-energy tables [Hub90]. The background in the SiLi detector can be estimated for a
proton kinetic energy Ep = 50 ± 3 MeV in SiLi gg by a projection of the channel range in
CsI r corresponding to this energy (see Fig. 5.1). The background between the punch-through
proton and pion peak and the stopped proton peak is about 10 ± 5 %. The same channel range
is applied on the fast CsI r and the slow CsI l component of the following CsI crystal (see Fig.
5.2). The projection in CsI r+CsI l give then a background estimation of about 6 ± 3 % between
the proton and deuteron peaks. The background in the SiLi-CsI telescope increases for smaller
angles in the laboratory.
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Figure 5.2: Left panel: matrix CsI r (fast component) versus CsI l (slow component) in channels for
the ring 15 (126o ≤ θlab ≤ 142o) for the reaction C+Au at the incident energy of 1000 AMeV. On can
observe, from the right side, lines corresponding to the neutral particles (γ’s, neutrons), the protons (p),
the deuterons (d), the tritons (t), the 3He’s, and the 4He’s. Right panel: projection of the channel range
in CsI r+CsI l (diagonal dashed line in the left panel) corresponding to the proton kinetic energy Ep =
50 MeV in SiLi gg.

As we are using CsI scintillation crystals, we have to consider the reaction losses coming
from elastic and inelastic nuclear interaction of charged particles passing through the crystals.
An elastic scattering of a particle leads to a slight change in its initial energy detected by the
scintillator. In the inelastic interactions of a particle with a nucleus, the loss of its primary energy
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can be high, especially for light particles as protons. In a CsI, according to the Glauber model,
the energy losses of protons can reach 25% for a kinetic energy of E = 215 MeV, maximum
measured in INDRA at forward angles (2o ≤ θlab ≤ 14o) [Avd99].

Fig. 5.3 presents the comparison between the proton energy spectra obtained by gates in the
SiLi-CsI telescopes (symbols) and in the CsI (lines) by the usual identification and calibration
(see chapter 3), for central (b/b0=0.0-0.2) C+Au reactions at 1000 AMeV for the backward
angles (45o ≤ θlab ≤ 176o). The energy spectra are not corrected for the reaction energy losses.
As both kinds of spectra should be corrected in the same way, their comparison is not affected.
The normalization of these spectra is done over the involved detector solid angle (∆Ωetalon =
13.15 msr), the SiLi-CsI telescope in the first case, the whole CsI ring in the second case. The
statistical error bars of the proton spectra presented in this chapter are included in the symbols.
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Figure 5.3: Proton kinetic
energy spectra identified by
a gate in the matrix SiLi
vs CsI (symbols) or in the
CsI crystals (lines) for cen-
tral (b/b0=0.0-0.2) C+Au re-
actions at 1000 AMeV for the
backward angles (45o ≤ θlab ≤
176o).

The SiLi-CsI spectra begin at a higher energy than the CsI spectra because, in the first
case, the protons with a kinetic energy Ekin < 15 MeV are stopped in the SiLi detector (2 mm
of silicon) after passing through the ionization chamber and the Si75 (80 µm of silicon). At
57o ≤ θlab ≤ 70o and 142o ≤ θlab ≤ 146o, the discrimination threshold were set at a slightly
higher level and cut into the high energy proton branch. At the other angles, this threshold is
lower and permits in the SiLi-CsI matrix the identification and calibration of protons punching
through the CsI, contrary to the usual identification and calibration in the CsI. This gives spec-
tra extending to higher energy but with essentially the same slope parameter as the CsI spectra.
The different maximum energies of the CsI spectra correspond to the different lengths of the CsI
crystals (see chapter 2). The drawing of the gate may also influence the shape of the spectra.
When the proton gate has a wide lower angle just before the pion line, it includes more protons
with the same energy than when the gate angle is more acute. In the first case, the spectra stop
then sharply, as for 45o ≤ θlab ≤ 57o, without the smooth decrease visible at 92o ≤ θlab ≤ 110o.
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Figure 5.4: Proton kinetic
energy spectra identified in
the ‘etalon’ calibration tele-
scopes (symbols) or in the
CsI crystals (lines) for cen-
tral (b/b0=0.0-0.2) C+Au re-
actions at 1000 AMeV for
the backward angles (45o ≤
θlab ≤ 176o). The binning of
the ‘etalon’ spectra is 5 MeV.

Both kinds of spectra are in good agreement. Nevertheless, we note that, at 45o ≤ θlab ≤ 88o

and E > 80 MeV, the SiLi-CsI spectra are twice as high as the CsI spectra. This angular region
corresponds to detectors with a high background, partly due to the overlap of punch-through
proton and deuteron lines. Moreover, this energy range coincides in the SiLi-CsI matrix with the
region where the stopped and punch-through proton lines are very close to each other. The gate
is very large at this place as shown in Fig. 5.1 and may increase the spectra yields by selecting
also more background. The other angles show discrepancies of maximum 10%.

Another comparison is done between proton kinetic energy spectra coming from the CsI and
the calibration telescopes (Si75-SiLi-CsI) , so-called ‘etalon’, for central (b/b0=0.0-0.2) C+Au
reactions at 1000 AMeV. Fig. 5.4 shows the general agreement within 10% between the var-
ious spectra at 45o ≤ θlab ≤ 176o. Nevertheless, some disagreements are visible diminished
by the highly compressed logarithmic scale as at 45o ≤ θlab ≤ 57o where the etalon spec-
trum is lower than the CsI one by 15% for E=130 MeV to 100% for E=10 MeV. The angles
47o ≤ θlab ≤ 70o and 156o ≤ θlab ≤ 176o present also differences of 50% and 35% for E=10 MeV.
At 70o ≤ θlab ≤ 88o, the proton spectrum is the most likely to be correct.

The overall good agreement among three different methods to identify and calibrate protons
in the INDRA multidetector leads us to the choice of using only the CsI proton spectra in the
following analysis.
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5.2 Characteristics of the proton sources

The sources emitting particles in heavy ion collisions can be characterised in various ways, for
example by their temperatures, their cross-sections, their velocities, their Coulomb energies, and
their radial flows. In this work, the nuclear temperature is prefered because it is, at the origin, a
thermodynamical and macroscopical variable that we attempt to apply to a nuclear system (see
chapter 1.1). The experimental procedures for temperature determination which are currently
used in nuclear reactions involve the examination of three aspects of the emitted particles: their
relative number [Alb85], their excited state populations [Mor94], and their kinetic energy. In a
ideal situation, each of these thermometers should give the same temperature. Under realistic
situations, each can be influenced in different ways by experimental and analysis conditions. In
this work, we will only study the kinetic thermometer described in the following.
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Figure 5.5: Fits (full lines) of the proton kinetic energy spectra (symbols) for the system C+Au at 1000
AMeV for semi-peripheral collisions (b/b0=0.4-0.6) at 3o ≤ θlab ≤ 176o.

In a canonical ensemble, the probability to find a particle in a defined energy is determined
by the Boltzmann factor exp(−E/T ) which contains the temperature of the system. The kinetic
energy spectra show in classical approximation a Maxwell-Boltzmann distribution:

N(Ekin) ∝
√

Ekin.e(−Ekin
T

) (5.1)
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As the temperature corresponds then to the inverse of the slope of the energy spectra, the
temperature obtained in this way is also called ‘slope temperature’. In the statistical limit, the
particle source is expected as a Boltzmann source. In this way, we hope to identify the proton
sources (and the fragment sources in the next chapter) on the basis of their temperatures.
To analyse the proton kinetic energy spectra, we use the Moving Source Fit code that is a
combination of relativistic Maxwell-Boltzmann functions (see appendix C). We apply, in our case,
the formulae corresponding to two sources moving in the laboratory with certain temperatures,
cross sections, and velocities. The Coulomb repulsion, peak energy and width, is considered only
for the target emission. The radial flow is fixed to zero for the two sources.
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Figure 5.6: Fits (full lines) of the proton kinetic energy spectra (symbols) for the system C+Au at 1000
AMeV for semi-peripheral collisions (b/b0=0.4-0.6) at 3o ≤ θlab ≤ 14o (left panel) and at 110o ≤ θlab ≤
176o (right panel).

The proton kinetic energy spectra are shown in Fig. 5.5 for semi-peripheral C+Au reactions
at 1000 AMeV at 3o ≤ θlab ≤ 176o. The centrality is given by the reduced impact parameter
b/b0, here b/b0=0.4-0.6 (see chapter 4). These spectra are fitted all together for two sources,
the fits are represented by the full line on each spectrum. These fits converge to values very
close to the experimental spectra. However, one can remark some discrepancies at low energies
and at forward angles, and at high energies and at backward angles, as presented in Fig. 5.6.
In both cases, the fit converges on higher values than the experimental proton spectra while
the fit is in good agreement with the data at low energies at backward angles and at high
energies at forward angles. As the Moving Source Fit is based on the hypothesis of isotropic
sources, we notice that the sources at low and high energies may be anisotropic. Due to this
feature of the proton sources, it is chosen to fit the low energy source only at backward angles
(70o ≤ θlab ≤ 176o) and for an energy E < 20 MeV (see left panel Fig. 5.7). In the same way,
the high energy source is fitted only at forward angles 3o ≤ θlab ≤ 27o and for energies E > 40
MeV (see right panel Fig. 5.7). This choice allows a good convergence of the fits to values close
to the experimental spectra, with only small discrepancies at very forward angles.
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Figure 5.7: Fits (full lines) of the proton kinetic energy spectra (symbols) for the system C+Au at 1000
AMeV for semi-peripheral collisions (b/b0=0.4-0.6) at 70o ≤ θlab ≤ 176o for the target source (left panel)
and at 3o ≤ θlab ≤ 27o for the early source (right panel).

b/b0 Source T σ β EC ∆EC

(MeV) (mbarn) (c) (MeV) (MeV)
0.0-0.2 low E 16.7 ± 0.2 910 ± 10 0.032 ± 0.003 0.2 4.5 ± 0.2
0.0-0.2 high E 66.3 ± 0.3 3770 ± 10 0.0008 ± 0.0006 0 0
0.2-0.4 low E 13.3 ± 0.1 2030 ± 10 0.026 ± 0.002 0.6 ± 0.4 4.5 ± 0.1
0.2-0.4 high E 70.8 ± 0.3 9510 ± 20 0.0021 ± 0.0007 0 0
0.4-0.6 low E 8.85 ± 0.09 2350 ± 20 0.013 ± 0.001 4.91 ± 0.06 1.5 ± 0.1
0.4-0.6 high E 53.3 ± 0.3 5080 ± 10 0.1505 ± 0.0006 0 0
0.6-0.8 low E 6.37 ± 0.09 1890 ± 10 0.000007 5.89 ± 0.05 1.7 ± 0.1
0.6-0.8 high E 28.0 ± 0.2 1220 ± 10 0.310 ± 0.001 0 0
0.8-1.0 low E 6.19 ± 0.08 136 ± 2 0.0019 6.77 ± 0.05 1.8 ± 0.1

Table 5.1: Fit parameters for proton spectra for the reaction C+Au at 1000 AMeV as a function of the
reduced impact parameter b/b0. The fits of the low and high energy sources give the temperature T, the
absolute cross section σ, the velocity β, the energy EC of the Coulomb peak, and the width ∆EC of this
peak for the two sources. The radial flow is fixed to 0 in both cases. When the value of one parameter is
very small, the fit may not give any error.

The parameters obtained by this fit method for the system C+Au at 1000 AMeV are pre-
sented in the table 5.1 for all impact parameters. Because of too low statistics after corrections
of stray particle effects, the high energy source can not be fitted for very peripheral collisions
(b/b0=0.8-1.0). One remarks that the slope temperature of the low energy source is decreasing
with the decreasing centrality, as well as its velocity and the temperature of the high energy
source. However, the velocity of this latter source increases with b/b0.
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Fig. 5.8 displays the slope temperature and the velocity obtained with the Moving Source
Fit code for the incident energies from 95 to 1800 AMeV for the low energy source, interpreted
as the target source, for the system C+Au as a function of the reduced impact parameter b/b0.
The target source presents a slope temperature increasing with the increasing incident energy
and decreasing with the decreasing centrality. The low energy protons are mainly produced in
central collisions at very high incident energy. One can remark that the slope temperature for the
beam energy of 95 AMeV is almost constant, around 5 MeV, signal that the reaction dynamics
are different at non-relativistic energies. A temperature of 5 MeV is a reasonable result for
standard evaporation [Xi97] which seems to be visible at all impact parameters. The velocity of
the target source also decreases with the decreasing centrality, but the dependence on incident
energy seems less clear. Nevertheless, it is interesting to note that the inclusive velocity appears
independent of the beam energy.
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Figure 5.8: Slope temperature and velocity of the target source for the protons as a function of the
reduced impact parameter b/b0 for the incident energies 95, 300, 600, 1000, and 1800 AMeV.

The high energy source presents in the same way an increasing temperature with an in-
creasing incident energy for central collisions, as plotted in Fig. 5.9 as a function of the reduced
impact parameter. For the other impact parameter bins, the distribution is not as systematic as
for the target source. Nevertheless, the temperatures for a beam energy of 95 AMeV stay lower
than at higher incident energies.

In the contrary to the low energy source, the velocity of the high energy source increases
with the decreasing centrality. The proton velocity at 95 AMeV may be considered separately
from the others. At this beam energy, a projectile component exists that is not present at higher
incident energies (see chapter 2.4). It is arduous to well determine a source velocity by selecting
only an angular coverage from 2o to 27o in the laboratory. At these small angles, velocity and
temperature compensate each other in the calculation of the fit.
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Figure 5.9: Slope temperature and velocity of the early source for the protons as a function of the reduced
impact parameter b/b0 for the incident energies 95, 300, 600, 1000, and 1800 AMeV.

The good convergence of the fit for the high energy source poses the question of the nature
of this source. The early source, also called preequilibrium or cascade source, is believed to emit
light particles at the beginning of the reaction before the system reaches the multifragmentation
regime. This first emission of light particles is supposed to be a dynamical process, dependent
on the incident energy. Nevertheless, according to the Moving Source Fit code convergence, the
observed high energy source appears thermal because of the Fermi motion and of the rescattering
processes.

5.3 Discussion

Comparisons with dynamical and statistical models

To compare our experimental results with theory, the ideal tool is a model producing protons
at low and high energies, in other words simulating the reaction from the early light particle
emission to the multifragmentation stage and maybe secondary decays. Transport models like
BUU attempt to describe the whole evolution of a heavy ion reaction. One can also employ a
combination of models. This second solution is chosen here.

Fig. 5.10 presents the proton spectra for the system C+Au at 1000 AMeV for semiperipheral
collisions (b/b0=0.4-0.6) at 45o ≤ θlab ≤ 57o coming from the data (full circles) and from the
Liège cascade coupled, in this case, to the Dresner evaporation code (full line). A percolation
code provides the transition between the cascade (dashed line) and the evaporation (dotted line)
codes (see Appendix B.3). The cascade code treats the colliding nuclei as clouds of nucleons,
up to a certain time after which the percolation procedure is used to construct fragments. The
excitation energy of these clusters is then released by means of an evaporation code. The proton
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Figure 5.10: The proton ki-
netic energy spectra (full cir-
cles) for C+Au at 1000 AMeV
are compared to the Liège cas-
cade model coupled to the
Dresner evaporation code (full
line) for b/b0=0.4-0.6 (semi-
peripheral collisions) at 45 ≤
θlab ≤ 57o. The dotted
line corresponds to the evap-
oration component and the
dashed line to the cascade
component.

spectra are in absolute cross-section. For this work, we choose the geometrical cross-section with
a nuclear radius of R = r0A

1/3 with r0 = 1.2 fm. This gives us a total cross-section σtot =
2990 mb. Each spectra is normalized by a factor σ/Nevt taking into account the geometrical
cross-section σ and the number of events Nevt corresponding to each region of centrality. The
theoretical spectra are defined in charge, mass, cross section σ, centrality b/b0, polar angle θlab,
and solid angle Ω.

In Fig. 5.11 and 5.12, we show the comparison between data and the Liège cascade coupled
with the Dresner evaporation code and the multifragmentation model SMM (see Appendix A.1),
respectively. One may remark a good agreement between data and theory for the high energy
part of the proton kinetic energy spectra corresponding to the cascade code for central C+Au
reactions at 1000 AMeV at 3 ≤ θlab ≤ 176o. However, the low energy part of these spectra is
overestimated by the Dresner code but much closer to the data in the SMM case.
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Figure 5.11: The proton kinetic energy spectra (full circles) for C+Au at 1000 AMeV are compared to
the Liège cascade model coupled to the Dresner evaporation code (open crosses) for b/b0=0.0-0.2 (central
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Figure 5.12: The proton kinetic energy spectra (full circles) for C+Au at 1000 AMeV are compared to
the Liège cascade model coupled to the SMM multifragmentation code (open crosses) for b/b0=0.0-0.2
(central collisions) at 3 ≤ θlab ≤ 176o.
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θ lab Figure 5.13: The proton kinetic energy spectra (full
circles) for C+Au at 1000 AMeV are compared to
the Liège cascade model (E > 40 MeV) coupled to
the Dresner evaporation code (top left panel) or to
SMM (top right panel) for b/b0=0.0-0.2 (central
collisions) at 45 ≤ θlab ≤ 110o. In the bottom panel,
they are compared to the Liège cascade model cou-
pled to SMM (open crosses) for b/b0=0.6-0.8 (al-
most peripheral collisions) at 45 ≤ θlab ≤ 110o.

Fig. 5.13 displays the same spectra, but only for 45 ≤ θlab ≤ 110o (top panels). In com-
parison to an evaporation code, the statistical multifragmentation model SMM produces more
fragments and fewer light particles. We obtain then a good agreement for the low energy part of
the spectra. This model still slightly overestimates the experimental proton spectra for central
collisions for Ekin ≤ 30 AMeV. For peripheral reactions at b/b0=0.6-0.8, there is an underes-
timation of maximum a factor 2 for 30 ≤ Ekin ≤ 60 MeV, as displayed in the bottom panel
of Fig. 5.13. The comparisons between data and models are collected for these two different
combinations and all the impact parameter bins, with the exception of the peripheral collisions,
and at 3 ≤ θlab ≤ 176o in appendix D.
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Other IntraNuclear Cascade models exist as the Dubna code [Ton83] (see Appendix B.1).
The Dubna cascade is older but similar to the Liège cascade. Its follows each particle state as
a function of time. Fig. 5.14 presents a comparison between the proton kinetic energy spectra
for C+Au at 1000 AMeV and the Dubna cascade model for inclusive data at 3 ≤ θlab ≤ 176o.
This cascade model is not coupled to any percolation and evaporation codes as it is for the
Liège cascade. We then compare the spectra in absolute cross-section for Ekin ≥ 25 MeV. One
remark,in this case, that this model reproduces well the slope of the experimental spectra but
overestimates their yields by a factor 5.
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Figure 5.14: The proton kinetic energy spectra (full circles) for C+Au at 1000 AMeV are compared to
the Dubna cascade model (open stars) at 3o ≤ θlab ≤ 176o for inclusive data.
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The Isabel cascade model differs from the Liège and Dubna cascade in the treatment of the
particles. It follows not each particle but the ensemble of the particles as a function of time. We
compare again inclusive proton kinetic energy spectra at 3 ≤ θlab ≤ 176o from the experiment
and the Isabel cascade model in Fig. 5.15. As the Dubna code, the cascade is there not followed
by any percolation and evaporation codes. In this case, the slope of the spectra for Ekin ≥ 25
MeV is not well reproduced. Isabel overestimates the temperature of the high energy source.
Nevertheless, the yields of the Isabel spectra are very close to the experimental ones for Ekin ≥
90 MeV.
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Figure 5.15: The proton kinetic energy spectra (full circles) for C+Au at 1000 AMeV are compared to
the Isabel cascade model (open triangles) at 3o ≤ θlab ≤ 176o for inclusive data.
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Comparison with EOS data

The EOS collaboration performed few years ago a study of the multifragmentation of the reac-
tion Au+C at 1000 AMeV. In order to check the quality of the INDRA analysis, we compare
here the inclusive proton kinetic energy spectra coming from the two experiments. The EOS
spectra are extracted from the references [Hau00] for 0 ≤ Ekin ≤ 100 MeV and [Sri99] for
50 ≤ Ekin ≤ 300 MeV. The spectra are there presented with their probability as Y-coordinate.
These spectra are respectively normalized by the empirical factors 220 and 90, respectively, in
order to overlap each other in the region 50 ≤ Ekin ≤ 100 MeV and to be comparable to the
INDRA spectrum in absolute cross-section.
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Figure 5.16: The INDRA
proton kinetic energy spec-
tra (full circles) for C+Au
at 1000 AMeV are compared
to the EOS spectra (full and
open squares) and to the
Liège cascade model coupled
to the Dresner evaporation
(open crosses) for inclusive
data at 3o ≤ θlab ≤ 176o.
The full and open squares cor-
respond to EOS data coming
from the references [Hau00]
and [Sri99], respectively.

The experimental spectra are also compared to the Liège cascade model coupled with SMM.
Fig. 5.16 presents the very good agreement between the two experiments. The model overesti-
mates the inclusive experimental data by about 10% but produces a spectrum with the same
slope parameter as the EOS and INDRA spectra.

Proportions of cascade and multifragmentation protons

The overall good agreement between the Liège cascade code coupled with SMM and the INDRA
experimental data allows the identification of the proton sources. The proportions of protons in
yield and kinetic energy emitted by these two sources are presented in Fig. 5.17 for the system
C+Au at 1000 AMeV at 0o ≤ θlab ≤ 180o as a function of the reduced impact parameter b/b0
for an ‘ideal’ detector, that means without high energy thresholds.
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Figure 5.17: Proportions of proton yields (left panel) and kinetic energy (right panel) between cascade
(Liège) and multifragmentation (SMM) for the system C+Au at 1000 AMeV in 4π.

The cascade proton yield increases from 60% of the total proton emission for central colli-
sions to 75% for 0.6 ≤ b/b0 ≤ 0.8 and decreases slightly for the most peripheral reactions due
to the presence of the carbon projectile simulated by SMM. The cascade kinetic energy follows
the same evolution from 90% for central collisions to 98% for 0.6 ≤ b/b0 ≤ 0.8. because of the
high energy of the projectile, the proportion of ‘SMM proton’ kinetic energy is higher in the
peripheral collisions.

INDRA has an angular coverage of almost 4π but owns low energy thresholds in the CsI
crystals depending of the telescope angle in the laboratory. Consequently, the proton proportions
in yield and kinetic energy presented in Fig. 5.18 exhibit a amount of cascade protons weaker
of 10 to 20% than in the case of an ‘ideal’ detector. However, the distributions as functions of
the reduced impact parameter show about the same increase, from 40% to 55% in yield and
from 70% to 88% in kinetic energy. from central to semi-peripheral collisions followed by a slight
decrease. This decrease is less prononced for the kinetic energy in peripheral collisions as the
particles emitted in these reactions are less energetic.

The angular distributions of the proton yield proportions presented in Fig. 5.19 show a
predominance of the cascade protons at forward angles for all impact parameters, as the mul-
tifragmentation protons are emitted by the target spectators nearly isotropically in the SMM
model. This predominance of the cascade protons increases from 78% to 98% with the decreas-
ing centrality. For the most peripheral collisions (b/b0=0.8-1.0), the projectile protons enhance
the SMM proportion at very small angles. Nevertheless, the proportion of cascade protons at
backward angles stays around 30-40% for all impact parameters due to the asymmetry of the
system.
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Figure 5.18: Proportions of proton yields (left panel) and kinetic energy (right panel) between cascade
(Liège) and multifragmentation (SMM) for the system C+Au at 1000 AMeV with the angular coverage
(3o ≤ θlab ≤ 176o) and the energy threshold conditions of the INDRA detector.
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Figure 5.19: Proportions of proton yields between cascade (Liège) and multifragmentation (SMM) as
functions of θlab and the reduced impact parameter b/b0 for the system C+Au at 1000 AMeV.
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The first ALADIN caloric curve was determined from Au+Au data at 600 AMeV [Poc95]
(see Introduction, Fig. 2). The features of the detector and the system led to certain analysis
conditions: an angular limitation of θlab < 7.3o, i.e. pt < pbeam.sin7.3o, and a rapidity cut at
y > 70% of the beam rapidity ybeam, i.e. y > 0.76. The proportions of cascade and multifrag-
mentation proton yield and kinetic energy are presented in Fig. 5.20. In central collisions, the
system is in vaporisation regime and the protons are almost all produced by the cascade model.
Multifragmentation appears for mid-peripheral collisions and is revealed by a high proportion
of multifragmentation protons at about 98 %. In peripheral reactions, there is evaporation of
the system and still emission of fragments. This may explain the 95 % in yield and 85 % in
kinetic energy of multifragmentation protons. One can remark that the proportions in yields
and kinetic energy are in this case similar. This is due to the selection of the projectile source
by applying the ALADIN conditions. This estimation of the proportions of protons produced by
the cascade or the multifragmentation stages may allow a rough correction of the nuclear caloric
curve determined in ALADIN studies.
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Figure 5.20: Proportions of proton yields (left panel) and kinetic energy (right panel) between cascade
(Liège) and multifragmentation (SMM) for the system Au+Au at 600 AMeV with the momentum (pt <
pbeam.sin(7.3o)) and rapidity (y > 0.76) conditions applied in ALADIN analysis.
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Chapter 6

Fragments,
Determination of the Target Source

According to the two-stage scenario of multifragmentation reactions, the first stage of the reac-
tion results in the formation of a remnant, which eventually undergoes multifragmentation in
the second reaction step, if sufficiently excited. This chapter is devoted to the study of fragments
(Z > 2) coming from the breakup of this remnant.

6.1 Fragment identification

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

1

10

10 2

0 5 10 15 20 25 30 35 40 45 50
Z

d
2 M

/d
Z

d
N

ev
t

C+Au at
1800 AMeV
1000 AMeV
600 AMeV
300 AMeV
95 AMeV

Figure 6.1: Inclusive charge
distributions for the system
C+Au at the incident energies
95 (thin full line), 300 (dashed-
dotted line), 600 (dotted line),
1000 (dashed line), and 1800
(thick full line) AMeV.

In the INDRA detector, fragments are identified in the whole detector with the exception
of the CsI crystals for θlab > 90o (see chapter 3.1), the heaviest fragments being emitting
at forward angles θlab < 45o. This emission decreases with the increasing incident energy, as
shown in Fig. 6.1, while the amount of Intermediate Mass Fragments (IMF’s) with 3 ≤ Z ≤ 30



80
Fragments,

Determination of the Target Source

is higher for the energies 600 and 1000 AMeV. This trend is also visible in the IMF mean
multiplicity as a function of the charged particle multiplicity Nc (Fig. 6.2). The IMF emission
reaches a maximum around Nc = 40 for the incident energies 600, 1000, and 1800 AMeV. The
distributions for the reactions at 1000 and 1800 AMeV decrease slightly for Nc > 40. This
‘rise and fall’ effect was already observed for symmetric and asymmetric systems for various
beam energies in ALADIN experiments [Sch96, Sch96b]. The IMF distributions published by
the ALADIN and EOS collaborations [Hau98] for the Au+C at 1000 AMeV reaction give a
maximum IMF mean multiplicity of 4 fragments for Nc = 40 while the INDRA data for the
same system in direct kinematics provides a mean multiplicity of 1.7 for the same value of Nc.
This discrepancy is due to too high identification thresholds in the backward ionisation chambers
(θlab > 45o). In direct kinematics, at relativistic energies, the target has a very low velocity and
emits fragments with a low kinetic energy themselves. With high identification thresholds, about
a half of the fragments is missed. Nevertheless, this inconvenience does only slightly handicap
the fragment study exposed in this chapter. At backward angles, the low part of kinetic energy
spectra is then not taken in account.
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6.2 Characteristic of the target source

Kinetic energy spectra

The fragments, as the protons in the previous chapter, may give indications about their emitting
sources through their kinetic energy spectra. These indications can be the temperature, the cross
section, the velocity, the Coulomb energy or the radial flow of the sources. In order to take into
account the different sources contributing to the experimental kinetic energy spectra, we use the
Moving Source Fit code, a combination of Maxwell-Boltzmann functions previously utilised in
the proton case (see chapter 5 and appendix C). We apply again the formulae corresponding to
two sources moving in the laboratory with certain temperatures, cross sections, and velocities.
The Coulomb repulsion, peak energy and width, plays a role for the two sources, this time, and
the radial flow is again fixed to zero for the two sources.
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Fig. 6.4 to 6.9 present the kinetic energy spectra (symbols) of the elements lithium, beryllium,
boron, carbon, nitrogen and oxygen for central collisions (reduced impact parameter b/b0=0.0-
0.2) for the reaction C+Au at 1000 AMeV fitted with the Moving Source Fit code (full lines). The
spectra slopes decrease with the increasing angle θlab due to the velocity of a high energy source.
One can remark the non-exponential shape of the beryllium spectra at 14o ≤ θlab ≤ 45o or the
boron spectra at 35o ≤ θlab ≤ 45o. This non-exponential behaviour is due to an identification
problem in the silicon detector that has not been solved up to now. Similarly, the lithium and
beryllium spectra are cut at high energy at 70o ≤ θlab ≤ 176o because of the non-exponential
behaviour of the CsI’s. The spectra are normalised according to the solid angle Ω and presented
without statistical error bars for the clarity of the presentation.
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Figure 6.3: Fit (full lines) of the target source of lithium kinetic energy spectra (symbols) for the system
C+Au at 1000 AMeV for central collisions (b/b0=0.0-0.2) at 110 ≤ θlab ≤ 176o.
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The fits are done for two sources, the target source at E ≤ 120 MeV and a second source
at higher kinetic energies. The target source is first fitted with fit parameters for one source at
backward angles (110 ≤ θlab ≤ 126o) as shown in Fig. 6.3. As its temperature is then determined
and fixed as entrance parameter, the spectra from θlab = 14o to θlab = 176o are fitted together
for two sources. The addition of a second source can modify the fits at backward angles as for
the lithiums: the inverse slope parameters of the lithium fits at 110 ≤ θlab ≤ 126o are a little
higher in Fig. 6.4 than in Fig. 6.3.
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Figure 6.4: Global fit (full lines) of lithium kinetic energy spectra (symbols) for the system C+Au at
1000 AMeV for central collisions (b/b0=0.0-0.2) at 14 ≤ θlab ≤ 176o.
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Figure 6.5: Global fit (full lines) of beryllium kinetic energy spectra (symbols) for the system C+Au at
1000 AMeV for central collisions (b/b0=0.0-0.2) at 14 ≤ θlab ≤ 176o. The non-linear shape of spectra at
14 ≤ θlab ≤ 45o is due to an identification problem in the silicon detector. The fits of these spectra take
only in account the data coming from the ionisation chamber (E ≤ 120 MeV) and from the CsI (E ≥ 300
MeV).
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Figure 6.6: Global fit (full lines) of boron kinetic energy spectra (symbols) for the system C+Au at 1000
AMeV for central collisions (b/b0=0.0-0.2) at 14 ≤ θlab ≤ 176o. The non-linear shape of the spectrum at
35 ≤ θlab ≤ 45o is treated in the same way than in the Beryllium case.
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Figure 6.7: Global fit (full lines) of carbon kinetic energy spectra (symbols) for the system C+Au at
1000 AMeV for central collisions (b/b0=0.0-0.2) at 14 ≤ θlab ≤ 176o.
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Figure 6.8: Global fit (full lines) of nitrogen kinetic energy spectra (symbols) for the system C+Au at
1000 AMeV for central collisions (b/b0=0.0-0.2) at 14 ≤ θlab ≤ 176o.
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Figure 6.9: Global fit (full lines) of oxygen kinetic energy spectra (symbols) for the system C+Au at
1000 AMeV for central collisions (b/b0=0.0-0.2) at 14 ≤ θlab ≤ 176o.
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The target temperatures presented in the next sections are determined by the first fit at
backward angles. On the other hand, the other target parameter, as the velocity, come from the
two source fit. Four spectra are not enough to let converge a one source fit on stable values for
these parameters. The fits of the non-linear beryllium and boron spectra take only into account
the data coming from the ionisation chamber (E ≤ 120 MeV) and from the CsI (E ≥ 300 MeV).
The spectra at backward angles (45 ≤ θlab ≤ 176o) are cut at low energy corresponding of the
high identification thresholds in the ionisation chambers in this part of the INDRA multidetector.
The stray particle effects for the peripheral collisions are avoided by stopping the fit at a kinetic
energy corresponding to the lowest energy of these particles (see chapter 2.4).

Temperatures and velocities
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Figure 6.10: Target slope temperature as a function of the reduced impact parameter b/b0 for the
incident energies 95, 300, 600, 1000, and 1800 AMeV for the elements lithium, beryllium, boron, carbon,
nitrogen, and oxygen. The very weak production of fragments of Z≥4 at 1800 AMeV for peripheral
reactions does not always allow the determination of the slope temperature.
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The target temperatures are displayed in Fig. 6.10 as a function of the reduced impact pa-
rameter for the incident energies from 95 AMeV to 1800 AMeV for the light fragments lithium
to oxygen. For each element, the slope temperature increases with centrality and beam energy.
Nevertheless, the IMF multiplicity (see Fig. 6.2) show that at 1800 AMeV, for the highest
charged particle multiplicity, the system reaches the vaporisation regime and produces more
light particles and less fragments. This may explain the saturation visible in the fragment slope
temperature at 1000 AMeV while this saturation does not appear in the case of the protons (see
chapter 5.2).
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Figure 6.11: Left panel: Zbound (ZAu - Mhydrogen) at 45 ≤ θlab ≤ 142o and normalised over 4π as a
function of the reduced impact parameter b/b0 for the system C+Au at the incident energies from 95 to
1800 AMeV. Right panel: Carbon slope temperature of the target source as a function of Zbound for the
system C+Au at the incident energies from 95 to 1800 AMeV.

The increase of the kinetic temperature as a function of the incident energy until 1000 AMeV
seems in contradiction with previous ALADIN results presenting an independence of the frag-
ment emission with the beam energy according to the centrality determined by the variable
Zbound (

∑
Z≥2 Z or ZAu - Mhydrogen in our case) [Sch96, Ode99]. The left panel of Fig. 6.11 shows

Zbound as a function of the reduced impact parameter b/b0 for the system C+Au at the incident
energies from 95 to 1800 AMeV. In fact, this is only an estimation of Zbound because of the detec-
tor energy loss thresholds: we measure in this case the hydrogen multiplicity at 45 ≤ θlab ≤ 142o

and we normalize over 4π. This is an approximation as in the previous chapter, we observed that
none of proton source is isotropic. Moreover, in this angular region, the maximum proton energy
detected by INDRA is E = 138 MeV. We then miss a part of the high energy protons, especially
for central collisions. Here, we consider only the target emission but the perfect application of
the formula should oblige us to take also in account the projectile emission. Nevertheless, this
rough estimation of Zbound gives values similar to ALADIN Zbound and appears to be dependent
on the reduced impact parameter and on the incident energy. This dependence is comparable to
those remarked for the slope temperatures. Via the reduced impact parameter, the carbon slope
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temperature of the target source is plotted as a function of Zbound and exhibits for 300, 600, and
1000 AMeV an independence in beam energy. The weak production of carbons at 1800 AMeV
for semi-peripheral peripheral reactions may explain the fluctuations of the slope temperature.
By this way, we retrieve the universality observed in the ALADIN experiment. In fact, the vari-
able Zbound is related to the excitation of the source while the reduced impact parameter b/b0
coming from the charged particle multiplicity is connected to the geometry of the reaction. One
can remark that the slope temperature of the target is very constant with the centrality of the
reaction for 95 AMeV. The reactions at this energy lead only to an evaporation of the system.
This effect is also visible in the IMF multiplicities in Fig. 6.2.
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Figure 6.12: Target velocity as a function of the reduced impact parameter b/b0 for the incident energies
95, 300, 600, 1000, and 1800 AMeV for the elements lithium, beryllium, boron, carbon, nitrogen, and
oxygen. The very weak production of fragments of Z≥4 at 1800 AMeV for peripheral reactions does not
always allow the determination of the slope temperature.

The velocity of the target source, displayed in Fig. 6.12 as a function of the reduced impact
parameter b/b0, present a decrease with decreasing centrality, with increasing incident energy,
and with increasing charge of the fragment for the beam energy of 300 AMeV and above. The
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velocity of the source at 95 AMeV, on the contrary, increases with b/b0 for the lithiums, this
increase roughly diminishing for Z≥4. The fluctuations of these latter velocities are due to the
very weak production of these fragments at 95 AMeV, especially for peripheral collisions. The
same reason may explain the higher lithium velocities for 0.8 ≤ b/b0 ≤ 1.0.
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Figure 6.13: Left panel: temperature of the target source as a function of the charge for Zbound < 50.
Right panel: velocity of the target source as a function of the charge for Zbound < 50.

By selecting a certain region in Zbound (Zbound < 50) corresponding to very energetic collisions,
i.e. central collisions for a beam energy of 600, 1000, and 1800 AMeV, we observe in the left panel
of Fig. 6.13 the distribution of the target source temperature from the protons to the oxygens.
This figure shows an increase of the temperature from about 17 MeV for the protons to 27 MeV
in mean value for the berylliums and a following decrease until 15 MeV for the oxygens. The
higher temperature for the beryllium is not yet well understood but is suspected to be due to
identification problems. The general decrease of fragment temperature as a function of the charge
was already observed in Au+Au reactions at 600 and 800 AMeV in ALADIN experiments for the
mean kinetic energies [Sch96, Sch96b]. The velocity distribution (right panel of Fig. 6.13 gives
a maximum for the lithiums at around 0.03 c and decreases for higher Z until 0.006 c in mean
value for the oxygens. One may remark that the proton temperatures and velocities are very
close to the fragment ones. Nevertheless, an ideal multifragmentation source, i.e. an equilibrated
source, would give the same temperature and velocity for all the light particles and fragments
that it emits. The discrepancies observed here, especially the relatively high velocities of protons,
lithiums and berylliums, can be due to particles coming from non-equilibrated sources. This effect
shows us the limits of our experiment. In spite of these fluctuations, the low energy protons and
fragments studied in this work appear as coming from the same target spectator source.
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Comparison with SMM

The lithium kinetic energy spectra are compared to simulations coming from the Statistical
Multifragmentation Model (SMM) (see appendix A.1) for the reaction C+Au at 1000 AMeV.
The excitation energy, charge and mass input parameters are given by the combination of the
Liège IntraNuclear Cascade and a percolation code, as in the previous chapter (see also appendix
B.3). Fig. 6.14 shows these comparisons for the most central bin of reduced impact parameter
b/b0.
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Figure 6.14: Comparison between lithium kinetic energy spectra with the SMM multifragmentation
model for b/b0=0.0-0.2 (central collisions) for the system C+Au at 1000 AMeV.
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Figure 6.15: Comparison between lithium kinetic energy spectra with the SMM multifragmentation
model for b/b0=0.6-0.8 (almost peripheral collisions) for the system C+Au at 1000 AMeV.

The model gives a globally good description of the experimental data for b/b0=0.0-0.2.
Nevertheless, one may remark discrepancies already for these central collisions at backward
angles, θlab ≥ 110o. This high overestimation of the model increases and reaches all the angles
for peripheral collisions as it is shown in Fig. 6.15. In this analysis, we used a combination of first
stage models before starting the statistical model, in the contrary to previous ALADIN studies.
This kind of combination give good results for protons, as shown in the previous chapter, but
may give not well adapted input parameters to SMM in the frame of the fragment study. The
cascade and the percolation code seem to produce a too high excitation energy for the peripheral
collisions. Moreover, even if SMM reproduces well the target source in central collisions, the
lithium spectra continue at large kinetic energy, coming from a second source that may be
called non-statistical.
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6.3 Second fragment source

In spite of the non-statistical feature of the second fragment source at high energies, we attempt
to fit this source by the combination of Maxwellians previously used for the target source. In
central collisions (see Fig. 6.4 to 6.9), one can observe some discrepancies between the fits and
the experimental spectra for the heaviest ions at 45 ≤ θlab ≤ 126o from E > 200 MeV. The
divergence of the fit increases with b/b0. The Fig. 6.16 shows the impossibility of the code to fit
the lithium spectra at forward angles (14 ≤ θlab ≤ 57o) for peripheral C+Au reactions at 1000
AMeV for E > 100 MeV.
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Figure 6.16: Global fit (full lines) of lithium kinetic energy spectra (symbols) for the system C+Au at
1000 AMeV for peripheral collisions (b/b0=0.8-1.0) at 14 ≤ θlab ≤ 176o. The non-linear of the spectra
at backward angles 70 ≤ θlab ≤ 176o is due to the stray particle effects (see chapter 2.4), the high energy
part of these spectra is not taken in account in the fit.
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The inability of the Moving Source Fit code to fit the second fragment source can be inter-
preted as a signal of the non-thermal feature of this source. Besides, it is interesting to remark
that these high energy fragments are not coming from a mid-rapidity source (y � 0.7), as ob-
served for Xe+Sn reactions between 15 and 50 AMeV in INDRA experiments [Pla00, Luk97],
but their rapidity is close to the rapidity of the center of mass (see chapter 2.4). The high energy
fragment source would be then characterised as non-thermal and emitting in the center of mass
of the C+Au reaction.
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Chapter 7

Correlations Between
Early Light Particles
and Fragments

In this chapter, we study the correlations between the multiplicities of charged pions or energetic
protons (Ep ≥ 150 MeV) and the fragment multiplicities in reactions 12C +197 Au at incident
energies from 300 to 1800 AMeV. The pions and energetic protons are both produced in an
early stage, just after the collision, while the fragmentation happens at the end of the reaction
process. The analysis of the correlations between these two kinds of particles should allow a
better understanding of the relation between these two stages of the nuclear reaction.

7.1 Pion cycle and decay modes

In reactions at relativistic incident energies, the excitation of ∆-resonances represents an impor-
tant mechanism for the transfer of energy from the relative motion of the colliding nuclei into
other degrees of freedom. This excitation is the first step of pion production, it is considered as
important also for the heating of the spectator residues via reabsorption or multiple scattering
of the pion from the ∆ decay.

At beam energies above few hundred of AMeV, the nucleons can be excited into ∆-resonances.
One of the potential signals for the presence of ∆-matter is the creation of pions as decay prod-
ucts of the ∆-resonance. Pions are mesons, exchange particles of the strong interaction between
nucleons.

The ∆-resonances and pions are coming from inelastic nucleon-nucleon reactions:

NN → ∆N (hard ∆ production)
∆ → Nπ (∆ decay)

∆N → NN (∆ absorption)
Nπ → ∆ (soft ∆ production)
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The pion production cycle, as it is coded in the IQMD model, is illustrated in the Fig. 7.1.
The IQMD model is a variation of the QMD model, briefly presented in Appendix A, explicitly
incorporating isospin and pion production via the ∆ resonance [Har89]. In this diagram, the
main process for sustaining ∆-matter is the ∆ → Nπ → ∆ loop, which, however, first has to be
fueled by the NN → ∆N process.
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Figure 7.1: Pion cycle in the IQMD model. The scheme describes (for b ≤ 5 fm and time-averaged) all
the model possible processes linked to the creation of ∆-matter. The probabilities in the boxes always
refer to the vertices they are directly connected with. The main process for sustaining ∆-matter is the
∆ → Nπ → ∆ loop, which, however, first has to be fueled by the NN → ∆N process (from reference
[Har89]).

Different sorts of ∆’s are produced and decay in their specific way:

∆++ → 1(p + π+)

∆+ → 2
3

(p + π0) +
1
3

(n + π+)

∆0 → 2
3

(n + π0) +
1
3

(p + π−)

∆− → 1(n + π−)

The decay of the ∆++ is visualized on the quark level as sketched in Fig. 7.2.
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Figure 7.2: Delta (∆++) decay. A pair quark-antiquark (d − d) is created, allowing the formation of a
pion (π+) and a nucleon (p).

The π0 decays electromagnetically: π0 → 2γ (τπ0 = 8.4 × 10−17s). The charged pions decay
weakly in matter: π+ → µ+νµ and π− → µ−ν̄ (τπ+,π− = 2.6 × 10−8s). However, the negative
pion π− has a high probability to be absorbed.

7.2 Pions and fast protons in INDRA
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Figure 7.3: Matrix SiLi versus CsI for the reaction C+Au at 1000 AMeV, for the ring 15 (126o ≤ θlab ≤
142o). In the left panel, the three main lines correspond to the protons, deuterons and tritons stopped in
the CsI crystal. In the right panel, the area surrounded by a solid line corresponds to the π+’s stopped
in the CsI. The dashed line indicates the fast protons (Ek ≥ 150 MeV) punching through the CsI.

INDRA was not built for the study of pion physics. For instance, there is no magnetic field
which could allow us to disentangle π+’s and π−’s. The 2 γ’s from π0 decay are drowned in
the huge amount of neutral particles detected by the CsI’s. However, as it is noticeable in the
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two panels of Fig. 7.3 for the reaction C+Au at 1000 AMeV, the pions are well detected in the
silicons and CsI’s and specially in the calibration telescopes, also for C+Au at 300, 600, and
1800 AMeV. Pions having a mass around 140 MeV, are consequently very rare at 95 AMeV.
According to the pion decay modes, we can say that the main part of the stopped pions in this
spectra are π+’s (right panel of Fig. 7.3). The π−’s are captured and absorbed by the ions of
the CsI. We expect a considerable energy deposition from the decay of the nucleus after π−

absorption which most likely moves the hit away from the pion line. The punch-through branch
of the pion line, in the bottom of the two panels of Fig. 7.3, is made of the two charged pions,
π+ and π−. Our interest is also attracted by the ‘fast protons’ (Ek ≥ 150 AMeV), which are
punching through the whole telescopes of INDRA. Only their energy losses are detected and
they can be identified by a line below the stopped proton line, on the right part of the right
panel of Fig. 7.3.

Due to this behaviour, we will not study pion energy spectra but pion yields as it will be
exposed in the following of the chapter. In our study, the background is defined by a judicious
shift of the gate corresponding to the wished particle, pion or fast proton, and substracted from
the data.
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Figure 7.4: Inclusive mean multiplicity of pions for 600 and 1000 AMeV as a function of θlab. The error
bars correspond to the error due to background substraction or the statistical error, if larger.
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The pions stopped in the CsI have a very low kinetic energy (between 2 and 46 MeV) in
the laboratory. The kinetic energy, Eµ=4 MeV, of the muons emitted in the pion decay is sub-
tracted from the measured kinetic energy of the pions. Due to the technical characteristics of
the calibration telescopes used for this analysis, the kinetic energy range changes according to
the detector. For this reason, cuts applying the shortest energy range (E=2-23 MeV) were built
to select pions in order to determine their angular distribution.

This distribution is visible in Fig. 7.4 for the reaction systems C+Au at 600 and 1000 AMeV.
The error bars correspond to the errors due to the background or, if superior, to the statistical
errors. For the incident energy of 1000 AMeV, the background in the calibration telescope is
very heterogeneous due to stray particle effects. This gives large error bars while they are much
smaller for the multiplicities at the energy of 600 AMeV. The stray particle effects decrease with
the beam energy (see chapter 2.4). The pions at 1000 AMeV presents the same behaviour than
at 600 AMeV with a multiplicity higher of a factor 1.7 than the multiplicity at 600 AMeV. This
reflects the exponential incident energy dependence of the pion production [Sto86, App95]. The
second remarkable point is that these two multiplicities reflect a slight anisotropy of the pion
emission as they are increasing with the polar angle θlab. This anisotropic emission is known for
higher energy pions [Sto86, Pel97]. Experiments performed at the Berkeley Laboratory and GSI
with the systems Ar+KCl at 1.8 AGeV [Bro84] and Au+Au at 1.06 AGeV [Pel97] respectively
show that the anisotropy of the pion emission increases with the pion energy until a maximum
for a pion kinetic energy in the center of mass of about 0.3 GeV. The anisotropy decreases for
higher energy pions.
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Figure 7.5: Pion (left panel) and fast proton (right panel) multiplicities as a function of the reduced
impact parameter b/b0 for C+Au at 300, 600, 1000, and 1800 AMeV.

For the following of the chapter, all the identified stopped pions are taken into account despite
the different energy ranges given by the detectors. We maintain the choice of the charged particle
multiplicity as global variable for the determination of the relative impact parameter as this mul-
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tiplicity is constitued, for the main part, of light particles (protons, alphas) so the fact that an
autocorrelation exists between the IMF’s and the charged particle multiplicity will very slightly
affect the results. This autocorrelation is cancelled in the correlation functions presented further.

The incident energy dependence exhibited by the pion angular distribution (Fig. 7.4) is also
visible with the mean multiplicty of pions as a function of the reduced impact parameter in
the left panel of Fig. 7.5 for the beam energies from 300 to 1800 AMeV. From studies with
the detectors Plastic Ball and FOPI [Wag96, Pel97], one knows that the pion multiplicity is a
linear function of the number of participants which is a function of the impact parameter. This
explains the increasing pion multiplicity with the increasing centrality that we observe also in
this figure. The fast protons show a similar behaviour with a higher production rate (see right
panel of Fig. 7.5).
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Figure 7.6: Pion mean multiplicity as a function of IMF multiplicity for C+Au at 600 (left panel) and
1000 AMeV (right panel) for five bins in impact parameter from central collisions with b/b0=0.0 to
peripheral reactions with b/b0=1.0.

Fig. 7.6 presents, as a first look on early stage-fragmentation relations, the mean pion mul-
tiplicity as a function of IMF multiplicity for five cuts in relative impact parameter for the
incident energy of 600 AMeV (left panel) and 1000 AMeV (right panel). The Intermediate Mass
Fragments (IMF) are selected in a charge range from Z=3 to Z=30. The distributions show for
600 and 1000 AMeV a negative slope for the very central reactions (b/b0=0.0-0.2). This slope
becomes more and more positive with decreasing centrality, with the exception of the multiplic-
ities for the very peripheral collisions (b/b0=0.8-1.0) for 1000 AMeV that exhibits a negative
slope. One observes an evolution of pion emission as a function of fragment production.
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Correlation functions

The correlation function of two particles is the ratio of the production yield of two particles in
coincidence over the production yields of each of these particles:

1 + R(π, IMF ) =
< Mπ × MIMF >

< Mπ >< MIMF >
(7.1)

with the mean multiplicity product < Mπ×MIMF >, the mean multiplicity of pions < Mπ >,
and the mean multiplicity of IMF’s < MIMF >.
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Figure 7.7: Correlation functions pion-IMF (top panel) and fast proton-IMF (bottom panel) as a function
of the incident energy for the system C+Au. Only the target IMF’s are selected for these functions.

The Fig. 7.7 presents the inclusive correlation functions of stopped π+ (top panel) and fast
protons (bottom panel) with IMF’s as a function of the incident energy. The target IMF’s are
selected for these correlation functions to be lower in rapidity than y=0.3 as displayed in Fig.
7.9. Due to the kinematics of the reaction, this selection is valid for all the incident energies.
Both distributions show a positive correlation except for the pion-IMF correlation function for
300 AMeV. This may be explained by the very low pion production rate at this incident energy.
The positive correlations indicate that the more high energetic particles are produced, the more
IMF’s are produced. Both types of particles are mainly produced in central collisions (see Fig.
7.7 and chapter 6) and we could easily guess that this positive correlation is due to the central
collisions where both particles are produced and then highly correlated. The correlation func-
tions displayed as functions of the reduced impact parameter b/b0 in Fig. 7.8 reveal in contrary
an slight anticorrelation for pions or no correlation in the case of fast protons for the central
collisions for the incident energies from 300 AMeV to 1800 AMeV. The correlation function
increases with b/b0, becomes positive for b/b0=0.4-0.6 when there is not complete overlap of
the carbon projectile and the gold target.
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Figure 7.8: Correlation functions of pion-IMF, in the top panel, and
fast proton-IMF, in the bottom panel as functions of the relative impact
parameter b/b0 for the system C+Au at 300, 600, 1000, and 1800 AMeV
(down triangles, up triangles, squares, and circles, respectively). Only the
target IMF’s are selected for these functions.
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The fast proton distributions increase more than these ones of pions with b/b0 but they all
decrease mor or less sharply for the very peripheral collisions. This part of the data is largely
influenced by stray particle effects. The correlation functions presented here are corrected by
subtraction from particle multiplicities coming from data without target. This correction gives
for pions at 600 AMeV a positive correlation while it is below one for 1000 AMeV. The fast
proton correlation functions show a correlation for 300 and 600 AMeV and an anticorrelation
for 1000 AMeV. The most peripheral data are very uncertain due to the low statistics given by
the small calibration telescopes (see chapter 2.2) and the stray particle correction. The data for
the pions at 300 AMeV and the data missing in pion correlations for 300 and 1800 AMeV and
in fast proton correlation at 1800 AMeV suffer from too low statistics.
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Figure 7.9: Rapidity distribution of Lithium’s for C+Au reactions at 1000 AMeV. Five cuts in relative
impact parameter are represented as well as inclusive data. The large disk around y=0 corresponds to
the gold target. In the very peripheral collisions (b/b0=0.8-1.0), the second circle is due to stray particle
effects. In order to avoid projectile fragments, the data are selected with a rapidity y ≤ 0.3.

To compare our experimental results with theory, we choose the combination of cascade and
statistical models already used in the proton case (see chapter 5). The correlation functions of
π+ and fast protons with IMF’s as functions of the reduced impact parameter b/b0 for the in-
cident energy are compared in Fig. 7.10, pions in top panel and fast protons in bottom panel, to
the corresponding correlation functions simulated by two IntraNuclear Cascade (INC) models:
the Liège INC coupled with the statistical model SMM [Cug80, Cug89, Cug97, Cug97b, Dor01,
Vol02, Bon95] and the Dubna INC also coupled with SMM [Ton83, Bon85, Bot02]. The cascade
model is a dynamical model describing the preequilibrium emission of light particles, including
pions. After the cascade, in the Liège case, the percolation provides the transition to the evap-
oration code that produces the fragments (see appendix B.3). In the Dubna case, at the end of
the cascade, a residue with a certain mass, charge and excitation energy remains which then can
be used as input for the statistical description of the fragment production (see appendices B.1
and A.1).
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Figure 7.10: Comparison of correlation functions of pions (top panel) or fast protons (bottom panel) with
fragments for the C+Au reactions at 1000 AMeV coming from the experiment (full squares), the Liège
Cascade model coupled to SMM (full line), the Gudima Cascade model also coupled to SMM (dashed
line), and Monte-Carlo calculation corresponding to a correlation with the reduced impact parameter
b/b0 (dotted line).

It has also been tested whether the information contained in the deduced correlation func-
tions significantly surpasses that contained in the dependences on the impact parameter exhib-
ited by the particle and fragment multiplicities [Tra02]. For this purpose, correlation functions
have been calculated by using a smoothed interpolation of the multiplicities as a function of the
charged-particle multiplicity and the reaction cross-section as a function of the same quantity
as an input. For the ranges of Nc corresponding to a given impact parameter bin, coincidence
events have been generated by randomly choosing particle multiplicities from Poisson distribu-
tions with mean multiplicities that corresponded to the individual Nc values of this bin. In this
model, the correlation functions will be one for infinitely narrow bins of Nc and it is only the
correlated behaviour of the mean values as a function of Nc in finite bins that can produce values
other than unity.

Fig. 7.10 shows good agreement between model and experimental data for both pion- and
fast proton-IMF correlation functions, except for the bin of largest impact parameter where the
pion and fast proton correlations are overestimated. These very peripheral data suffer a lack of
statistics due to the small size of the detectors and the stray particle correction. Their analysis is
then uncertain. Nevertheless, the consistence between the data, the models, and the calculations
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from the mean multiplicities for central and semi-peripheral collisions (0 ≤ b/b0 ≤ 0.8) let us
remark that the increasing correlation functions with the decreasing centrality are the fact of
the correlation between the different multiplicities and the reduced impact parameter rather
than between the multiplicities themselves. According to the study done in this section, the
production of pions or fast protons in the early stage of the reaction does not seem to directly
influence the emission of fragments during the multifragmentation stage.
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Summary

The present thesis work reports on the study of mechanisms in the C+Au reaction at relativistic
energies at the occasion of the INDRA@GSI experiment. This experiment was a unique oppor-
tunity to combine a technologically highly advanced detector usually working at non-relativistic
energies at GANIL with the higher energy beams produced by the SIS facility at GSI. The aim
of the Carbon beam part of the experiment is to study the reaction mechanisms in relativistic
heavy ion collisions in order to disentangle early and multifragmentation emissions of light parti-
cles. This sorting should permit the determination of a more precise nuclear caloric curve T(E*)
from the multifragmentation data, as previous works revealed a dependence of the excitation
energy E* on the incident energy [Ode99].

C+Au is a system already studied in ALADIN and EOS experiments, but in inverse kinemat-
ics [Sch96, Hau98]. The INDRA@GSI experiment brings advantages including a large angular
coverage (90% of 4π), a very good resolution for light particles, and, in direct kinematics, target
emissions observed at the same rapidities from 95 AMeV to 1800 AMeV. On the other hand,
this experiment suffers from low and high technical thresholds that do not allow the detection
of all the reaction products. The particularity of the INDRA@GSI experiment led to additional
experimental difficulties such as stray particles polluting the data at low multiplicities (see chap-
ter 2). Nevertheless, the charged particle multiplicity is chosen in this study as a global variable
to determine the reduced impact parameter of the reaction (see chapter 4).

The proton kinetic energy spectra were first studied via combinations of Maxwell-Boltzmann
functions for two sources. These fits emphasize the anisotropy of the two proton sources. The
results of these fits reveal the existence of a low energy source corresponding to the target emis-
sion with temperatures increasing with the beam energy as a function of the reduced impact
parameter. The high energy proton source is also analysed using Maxwell-Boltzmann functions
and allows a good convergence of the fits. This fact may be interpreted as a signal of the ther-
mal feature of the source. On the other hand, the high energy protons are well reproduced
by the Liège Intra Nuclear Cascade model, also called Cugnon cascade. This good agreement
demonstrates that these high energy protons come from the early cascade source, emitting light
particles just after the first impact. The low energy proton spectra are compared to two differ-
ent statistical models, the Dresner evaporation code and the multifragmentation model SMM
(see appendices A and B). Whereas the evaporation overestimates the data, SMM gives predic-
tions in good agreement with the data because of a higher fragment production. According to
these comparisons, the favoured scenario of proton production would be an intranuclear cascade
followed by a statistical multifragmentation emission. The INDRA data are also compared to
other cascade models as the Dubna and the Isabel codes. Theses two models overestimate the
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experimental proton spectra. These spectra are nevertheless in very good agreement with EOS
proton spectra for the reaction in inverse kinematics Au+C at 1000 AMeV. The proportions of
early cascade and multifragmentation protons are determined from the combination Liège-SMM
for C+Au at 1000 AMeV, but also for Au+Au at 600 AMeV giving a possibility to correct the
ALADIN nuclear caloric curve (see chapter 5).

The low energy light fragments present similar temperature distributions as the protons. In
this work, Zbound is shown to be dependent on the beam energy as a function of the reduced
impact parameter in particular conditions. The dependences of temperature and Zbound as func-
tion of the impact parameter compensate each other and lead to the universality observed in the
ALADIN experiments [Sch96, Ode99]. The reduced impact parameter b/b0 and Zbound appear
as complementary variables, as the reduced impact parameter is related to the geometry of the
source while Zbound is connected to the excitation of this source. The kinetic energy spectra of
fragments are compared to the combination of the Liège cascade and the SMM model. A good
agreement is observed for central collisions but not for peripheral collisions. The cascade and
percolation codes seem here to bring a too high excitation energy into the SMM code for periph-
eral collisions. For the high energy fragments, the combination of Maxwell-Boltzmann functions
used in this analysis do not converge. This fact may denote the non-thermal feature of these
fragments. Their second remarkable characteristic is their rapidity close to the center of mass
rapidity (see chapter 6).

The observation of pions, for the first time with the INDRA multidetector, gives us the oc-
casion to study correlations between the early source and the multifragmentation source for in-
cident energies Einc ≥ 300 AMeV. The pions were detected at backward angles 45 ≤ θlab ≤ 176o

and present a mean multiplicity that increases slightly with the angle in the laboratory for the
reactions C+Au at 600 AMeV and 1000 AMeV. The correlation functions of pions and fast
protons (E > 150 MeV), both kinds of particles emitted at the beginning of the reaction, with
intermediate mass fragments (3 ≤ Z ≤ 30) exhibit an increase from a small anticorrelation
for central collisions to a positive correlation for peripheral collisions. The comparisons with
combinations of cascade and statistical models, Liège and Dubna cascades, each coupled with
SMM (see appendices A and B), show good agreement between the data and the models. Cor-
relation functions calculated by using a smoothed interpolation of the multiplicities and the
reaction cross-section are also in good agreement. This emphasizes the dominating dependence
of the pion- and fast proton-fragment correlation functions on the reduced impact parame-
ter. The production of pions or fast protons in the early stage of the reaction does not seem to
directly influence the emission of fragments during the multifragmentation stage (see chapter 7).

The present work does not give a complete analysis of the data obtained with relativistic 12C
beams. Another part of the INDRA@GSI experiments was dedicated to various combinations
of 12C and Sn, and Xe and Sn isotopes as projectiles and targets respectively. These experi-
ments are in the direction of isotopic studies [Sai02]. Concerning the 12C+197Au, the two proton
sources determined in this work should allow us in the following to determine the excitation
energy of the multifragmentation source and then a caloric curve of the C+Au reaction. Dur-
ing this work, we stumbled on some results which are not yet understood, such as the higher
temperatures of beryllium in comparison to lithium and boron slope temperatures (see chapter
6.2). The anticorrelation of fast protons with fragments for the peripheral collisions at the in-
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cident energy of 1000 AMeV (see chapter 7.2) will also need further checks in the following of
this work. One of the most fascinating observations that one should follow more closely is the
high energy source of framents with a velocity close to the center-of-mass velocity. This seems
to indicate that the spectator picture is too simple. It will also be interesting to correct the
high identification thresholds of the backward ionization chambers (45 ≤ θlab ≤ 176o) in order
to obtain an IMF multiplicity comparable to the ALADIN and EOS results [Sch96, Hau98].
Furthermore, the calibration telescopes of the INDRA multidetector, i.e. the silicons and CsI
detectors at forward angles, may allow the continuation of the temperature analysis by studying
isotopic thermometers.
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Appendix A

Statistical, Dynamical and Hybrid
Models

A.1 Statistical models

Statistical models assume an equilibrated source emitting fragments in either microcanonical,
canonical, or grand canonical ensembles. There are two major aspects that give rise to differences
between models. The first concerns the assumption of the break-up process itself. Either it
happens spontaneously, all fragments are emitted at the same time, or this process is slow, the
fragments are emitted sequentially. The second aspect of physical relevance for model predictions
is how individual nuclei are included.

∆
∆ E

E

GRAND CANONICALMICROCANONICAL
Isolated system

CANONICAL
Exchange of energy

ENSEMBLES

Exchange of energy
and particlesT=constanttotE    =constant

Figure A.1: The three thermodynamical ensembles, microcanonical, canonical, and grand canonical (also
called macrocanonical).
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Statistical Multifragmentation Model (SMM)

The Statistical Multifragmentation Model (SMM) [Bon85, Bon95] is used in several versions
to predict the break-up partitions of fragments at freeze-out density. It is a mixed approach,
based on the microcanonical assumption (conservation of the total energy) and using canonical
prescriptions of partitions. It assumes that fragments are distributed in a certain available volume
V (supposed to be the freeze-out volume) following Boltzmann statistics. The density of the
freeze-out corresponds to the coexistence region of the phase diagram. The free volume Vf , which
determines the translation entropy, is Vf = χV0. The total freeze-out volume is Vtot = (1+χ)V0.
This factor χ is in fact multiplicity dependent through

χ =

(
1 +

d0.(M1/3 − 1)

r0.A
1/3
0

)3

− 1 (A.1)

therefore d0 is the relevant model parameter rather than χ itself. For d0, usually a value of
1.4 fm is chosen and r0 = 1.17fm.

The internal structure of the extended fragments is described by means of the liquid drop
model (see, for instance, the Ref. [Eva55]). Each single fragment contributes to the total free
energy through its thermal motion, the volume, surface, Coulomb, and symmetry energy terms,
in the following way:

Ftot =
∑

(A,Z)

F (A,Z) =
∑

(Z,A)

Ftherm(Z,A)+Fvol(Z,A)+Fsurf (Z,A)+FCoulomb(Z,A)+Fsym(Z,A)

(A.2)
In particular, for a fragment of charge Z and mass A, these contributions are:

Ftherm(A,Z) = −T ln

(
g(A,Z).Vf

λ3

)
+ T

lnN(A,Z)
N(A,Z)

Fvol(A,Z) = (−W0 − T 2/ε0).A

Fsurf (A,Z) = β0

(
T 2

c − T 2

T 2
c + T 2

)5/4

.A2/3 (A.3)

FCoulomb(A,Z) =
3
5
.

Z2e2

r0A1/3

(
1 − 1

(1 + χ)−1/3

)

Fsym(A,Z) = ν
(A − 2Z)2

A

with the degeneracy factor g(A,Z), the thermal wavelength λ, the number N(A,Z) of frag-
ments (A,Z) in the partition, the binding energy W0 per nucleon of nuclear matter at the
saturation density, the inverse level density parameter ε0 originating from the Fermi gas model
(ε0 = 16 MeV), the surface tension energy β0 of a nucleus in its ground state (β0 = 18 MeV),
the critical temperature Tc as shown on Fig. A.2 (Tc = 16 MeV in the present case), and the
symmetry energy ν corresponding to the Bethe-Weizsäcker mass formula (ν = 25 MeV).
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Figure A.2: The qualitative behaviour of the equation of state of nuclear matter P (ρ, t) in the region of
the liquid-gas phase transition. The hatched area indicates the region where liquid and gaseous phases
can coexist under the condition of thermodynamical equilibrium. ρ0 corresponds to the density of stable
nuclei [Cur83].

In this approach, the temperature T is derived from utilising the conservation of the total
energy, which is:

Etot = E0 + Eg.s. =
3
5
.

Z2e2

r0A1/3
+

∑
allfragments

N(A,Z)

(
F (A,Z) − T

∂F (A,Z)
∂T

)
(A.4)

with the energy Eg.s. of the ground state of the decaying initial nucleus with A0 and Z0.

In the canonical prescription, the probability distribution for all possible fragment partitions
f.p. is

P (f.p.) =
exp(−Ff.p./T )∑

allf.p. exp(−Ff.p./T )
(A.5)

where Ff.p. is the total free energy of a given fragment partition.

Here the mass and charge are exactly conserved within every single partition, or in other
words, within every single event. However, in the grand canonical mode of this model, the frag-
ment numbers have to be replaced by their average values. The produced fragments (so-called
‘primary’ fragments) may be excited and may also undergo a secondary decay. The channel in
which they will de-excite depends on their mass: fragments up to oxygen can deexcite by break-
ing into several single nucleons and light clusters. Heavier, excited fragments can evaporate light
particles [Bot87].
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Here, one follows the suggestion of Weisskopf and Ewing [Wei40] in a generalized form which
allows also heavier clusters to be emitted. It used the level density in the Fermi gas model:

ρ(E∗) ∝ exp
(
2
√

aA.E∗
)

(A.6)

as an ansatz for the population of the highly bound nuclear states. The level density a is
a � 0.12MeV −1.

Within this SMM approach, a drastic change in the decay pattern of an excited nucleus is
found around temperatures of 6 MeV [Bot87]. At the lower part of the corresponding energy
scale, evaporation from a compound nucleus is the most important process, whereas at the
higher temperatures, the multifragment break-up dominates. It seems that this transition is a
manifestation of the liquid-gas phase transition of finite nuclei.

A.2 Percolation model

The percolation model [Bau85, Cug89] has the basic advantage that it explicitly includes a phase
transition and is therefore suited to analyse the evolution through the critical region. Percola-
tion is based on a Monte Carlo technique. The sites of an infinite lattice are randomly occupied.
Clusters are defined by a couple of sites which are connected through links between nearest
neighbours. The probability of a link between lattice sites being broken is commonly assumed
to increase monotically with the excitation energy brought into the system. The transition from
an intranuclear cascade, the Liège code, to a percolation model is presented in the section B.3
of the appendix B.

A.3 Dynamical models

With the appearance of exclusive measurements, it was necessary to perform more elaborate cal-
culations treating the dynamics of the collision. The dynamical models follow the time evolution
of the system. There exist numerous models simulating the dynamics of two colliding nuclei. We
will present the model based on molecular dynamics in this appendix. The appendix B is fully
dedicated to the cascade models.

In molecular dynamics, the time evolution of the N-body phase space density fN follows the
Liouville equation:

dfN

dt
= {fN ,HN} +

∂fN

∂t
= 0 (A.7)

with fN(x1, p1, x2, p2, . . . , xN , pN ) and the classical Poisson brackets {.,.} containing the ini-
tial conditions of the N-body hamiltonian HN , i.e. different microscopic states of the system
but having the same macroscopic properties.
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For given initial conditions describing the system in a certain state at time t0

ri = ri(t = t0) and pi = pi(t = t0) i = 1, . . . , N. (A.8)

with the position in normal space ri and the momentum pi in momentum space for the
particle i, the propagation of nucleons in the system is reduced to the Hamilton equations of
motion

ṙi =
∂HN

∂pi
ṗi = −∂HN

∂ri
i = 1, . . . , N. (A.9)

In order to apply this formalism to heavy-ion collisions, it has been substantially extended to
the quantum molecular dynamics model (QMD) [Aic88, Aic91, Pei89, Pei92] which incorporates
the most important quantum features, such as the Fermi motion, the hard scattering and the
Pauli blocking of the final states in the binary nucleon-nucleon collisions.

The basic idea of quantum molecular dynamics is to propagate nucleons, which are repre-
sented by Gaussian-shaped functions in configuration and momentum space,

fi(x, p, t) =
1

(πh̄3)
exp

{
− (x − ri(t))2

2L2
− 2L2

h̄2 (p − pi(t))2
}

(A.10)

with respect to mutual two- and three-body forces, with the positions x, ri(t) in normal
space, the positions p, pi(t) in phase space, and the theoretical ‘width’ of the wave packets L, a
parameter that does not correspond to any physical observable and should therefore be deter-
mined by the condition that its actual value should not influence the results of the model [Gro90].

The QMD model does not proceed the mean field approximation but treats instead the two-
and three-body interactions of nucleons. The nucleons evolve in a total interaction potential
composed of a Coulomb term, a Yukawa term, a local term and an additional term taking into
account the momentum dependence of the interactions. The local potential term is parametrized
from Skyrme two- and three-body forces [Sky59] with a dependence on the density, which allows
a direct link to the equation of state. The reaction is made of an ensemble of binary collisions
between nucleons that are submitted to the Pauli principle in their final state. The fragments
are formed at the end of the reaction with a coalescence criterium in the position space. This
criterium consists in linking two nucleons (or more) if the centroids of their respective wave
packets are distant of less than 3fm. The calculations are done event by event, which allows to
simulate the bias of the detection setups for the comparison with experimental measurements.

Several extensions based on the QMD model have been developed:

-IQMD [Har89] distinguishes the protons and the neutrons and treats the production, the
propagation and the absorption of the pions through the ∆ resonances.

-BQMD [Boh91] is intended to the description of multifragmentation.
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-QMD+SMM [Pei92] treats the deexcitation of fragments by association with a statistical
multifragmentation model (see section A.1).

-PQMD [Kon95] utilises an ‘auto-consistent’ Pauli potential.

-GQMD [Jae92] uses the Brückner theory for the calculation of the nucleon-nucleon interac-
tion potential.

-RQMD [Sor89] describes the dynamics of the reactions in a relativistic formalism.

A.4 Transport models

There are different approaches that differ in the techniques of numerical treatment of the Landau-
Vlasov equation: Vlasov-Uehling-Uhlenbeck (VUU) [Kru85, Mol87], Boltzmann-Uehling-Uehlenbeck
(BUU) [Ber84, Aic85], and Landau-Vlasov (LV) [Gre87]. These models are based on the assump-
tion that the one-body phase-space distribution function of nucleons evolves under the influence
of its own mean field and is only modified by binary collisions. The collision integral usually is
of a Boltzmann-type with additional phase space density factors, which account for the possible
Pauli blocking of the final states. The time derivative of the phase space density df/dt follows
the Landau-Vlasov equation which is using the Vlasov equation accounting for the evolution of
the f function in the mean field, added with extra gain and loss terms, on the right-hand side,
which accounts for the hard scattering of the nucleons. This equation is the following:

∂f

∂t
+ v.∇rf −∇rU.∇pf = −

∫
d3p2d

3p′1d3p′2
(2π)6

σ.v12

×(f1f2(1 − f ′
1)(1 − f ′

2) − f ′
1f

′
2(1 − f1)(1 − f2))

×δ(p + p2 − p′1 − p′2) (A.11)

with the phase space densities f1, f2, f
′
1, f

′
2 (1, 2= two scattering particles, ′= final state), the

velocities v, v12, the momenta p, p2, p
′
1, p

′
2, and the nucleon-nucleon cross-section σ. Note that

the right-hand side differs from the classical collision integral by the Pauli-blocking factor.

In this approach, the mean field is sometimes approximated by the Skyrme parametrization
[Sky59]:

U =
E

N
= αρ + βρν (A.12)

with α = t1
2 , β = t2

2 , the density ρ, and the constant ν equal to 2 in the three-body inter-
action. The constants t1, t2 measure the mean central potential. Only the two-and three-body
terms of the spatial part of the interaction are used without regarding the exchange terms, like
in the local Skyrme interaction V (r1) = t1δ(r1 − r2) + teδ(r1 − r2)δ(r1 − r3), with the positions
r1, r2, r3 of three particles in normal space. Sometimes, this parametrization is extended to a
momentum dependence of the force (‘Gogny’ force).
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There are differences in the numerical realisation of the propagation. Numerically, the equa-
tion A.11 can be solved using a test particle method, where each physical nucleon is represented
by a number of pointlike test particles. This is done in order to provide a smooth density profile.
The nucleons are allowed to collide with the free nucleon-nucleon cross-section σ in BUU/VUU.
VUU uses a phase space sphere around each nucleon, while BUU has a fixed grid, which can
be interpreted as a Lagrangian or Eulerian system. Within these realisations, several events can
be calculated in parallel, but without allowing two nucleons from different events to collide. In
contrast, in Landau-Vlasov calculations, this is not the case: here nucleons from different events
may collide. As a consequence, the corresponding LV cross-section has to be scaled down by the
number of test particles

σLV =
σfree

Ntestparticles
(A.13)

These approaches describe in a satisfactory way the raw features of the observed phe-
nomenons, but they have as principal drawback the impossibility of natural formation of frag-
ments as they describe the evolution of the one-body distribution function. A rather recent
‘hybrid’ version [Zha95], has been developed including the treatment of coulombian effects,
of the momentum dependence of the interactions and of the fragment formation by a coales-
cence criterium. Methods based on the Boltzmann-Langevin equation have been developped
that allow to simulate approximately the dynamical path followed by nuclear systems cross-
ing the spinodal region. They consist of a ‘Boltzmann evolution’ starting from an inhomoge-
neous initial system complemented by a brownian force (Brownian One-Body Dynamics: BOB)
[Cho94, Gua96, Fra01]. The amplitude of the initial density fluctuations or the magnitude of
the stochastic force is chosen to reproduce the dynamics of the most unstable modes for infinite
nuclear matter in the spinodal region.

A more complete presentation of multifragmentation models is given in references [Mor93]
and [Poe96].
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Appendix B

Intra-Nuclear Cascade Models

The Intra-Nuclear Cascade models (INC) are dynamical models dedicated to the description
of the first step of the heavy-ion reaction, which means the evolution of this reaction from the
beginning of the collision up to the onset of equilibration. In so-called hybrid models, the sub-
sequent evolution of the reaction is generally treated in a statistical way (see appendix A.1).

Usually, the nucleon is described as a sphere of diluted gas, a Fermi gas of protons and
neutrons, where the nucleons can hit each other. The nucleons are considered essentially as free
particles, the principal effect of the medium is due to the Fermi degeneracy of the nuclear matter
according to the Pauli principle. Fig. B.1 shows the scheme of a nucleon interaction in a reaction
in the cascade stage.
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Figure B.1: Cascade process.

The motion and the history of each nucleon and product of the interactions is followed. The
impact parameter determines the sequence of the events. For a peripheral collision, very few
projectile nucleons make a collision, then little of energy is transferred to the target nucleus, if
the colliding nucleons do not fly out of the target. In contrary, in central reactions, the projectile
particles have to perform several collisions in the nuclear matter, giving up a lot of energy to
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the target nucleons, until a possible capture. The secondary nucleons can escape or carry out
other collisions themselves, dissipating in this way a bigger fraction of the initial energy. This
process leads to the formation of a composite nucleus close to thermal equilibrium.

B.1 Dubna cascade

The INC model is based on a Monte-Carlo solution of the relativistic Boltzmann equation for a
one-particle distribution function fA(x, pA) ≡ fA of a gas mixture:

pµ
(A)∂µfA(x, p(A)) =

∑
A′

Dcoll(fA, fA′
) (B.1)

with the collision term Dcoll, the four-dimensional coordinate xµ and the momentum pµ of
a particle.

In the case of a heavy-ion collision, an important simplification of the cascade equations
comes from neglecting the interaction between particles of the same kind. Three kinds of parti-
cles are considered: projectile and target spectators, and the participants.

For the projectile spectator (proj), the Boltzmann equation becomes

pµ
proj∂µfproj(x, pproj) = −fproj

∑
J=target,part

∫
fJQproj.J .σproj.J

tot dωJ (B.2)

for the target spectator (target),

pµ
target∂µf target(x, ptarget) = −f target

∑
J=proj,part

∫
fJQtarget.J .σtarget.J

tot dωJ (B.3)

and for the participant part (part),

pµ
part∂µfpart(x, ppart.) = −fA

∑
J=proj,target

∫
fJQpart.J .σpart.J

tot dωJ

+
∑

J=proj,target

∫ ∫
fpart′fJQpart′.J

npart′.J∑
ν=2

dσpart.J(ν)
dωpart

dωpart′dωJ

+
∫ ∫

fprojf targetQproj.target

nproj.target∑
ν=2

dσproj.target(ν)
dω

dωprojdωtarget (B.4)

with the relative momentum-energy tensor QIJ =
√

pµ(I)p(J)µ − (c2mImJ)2.

Properties of hadron-nucleon collisions enter into the equations B.2, B.3, and B.4, describ-
ing the two-nucleus interaction through the differential distributions dσ(ν)/dω and total cross
section σtot, the latter being corrected for the Pauli exclusion principle.

In the limit of hadron reactions, when the projectile nucleus is replaced by a nucleon, the
terms with a factor fproj should be omitted (the equation B.2 is absent). Using conventional
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three-dimensional variables x, p → �r,�v, t, one may now rewrite the equations B.3 and B.4 as
follows

( ∂

∂t
+ �vtarget

�∇
)
f target = −f targetρpart(�r, t) < σvrel > (B.5)

( ∂

∂t
+ �vpart

�∇
)
fpart = −fpartρtarget(�r, t) < σv′rel >

+
∫

d�vpart′f
part′ρtarget(�r, t) < σv′′rel > (B.6)

with vrel = cQIJ/(p0(I)p0(J)).

The averages over the distribution functions are determined in the standard manner

< σvrel >=
1

ρ(�r, t)

∫
d�vf(�r,�v, t)vrelσ(v) (B.7)

with the normalisation to the particle number density

ρ(�r, t) =
∫

d�vf(�r,�v, t) (B.8)

The equation B.6 can be reduced to the integral equation

fpart(�r,�v, t) =
∫ 0

−∞
dτ.exp

[
−
∫ τ

t
dτ ′ < σv′rel > ρtarget(�r − �v(t − τ ′), τ ′)

]

×
∫

d�vpart′f
part′(�r − �v(t − τ), �vpart′ , τ)ρtarget(�r − �v(t − τ), τ) < σ′′

rel > (B.9)

In this integral form, the physical meaning of the cascade model is most clearly manifested:
the probability to find a fast particle is governed by all the previous collisions taken with the
exponential absorption factor of survival.

In a naive cascade approach, one neglects the time dependence of the nucleon number density
of the target nucleus, i.e. ρtarget(�r, t) � ρ0(�r).

The joint solution of B.5 and B.6 takes into account the depletion of the nucleon density
of the target nucleus in the course of the intranuclear cascade. As follows from B.5, the nu-
cleon density decreases exponentially and this decrease may essentially influence the dynamics
of subsequent collisions in the case of high density cascade particles (i.e. at high bombarding
energies) or for targets with few nucleons. The depletion leads to the saturation of the beam en-
ergy dependence for the number of knocked-out nucleons, the excitation energy and the transfer
momentum of the residual nucleus (the limitation of the fragmentation of the target nucleus).
Physically, these phenomena result from the finite number of nucleons in an interacting nuclear
system.

Coming to heavy-ion collisions, the solutions of the cascade equations B.2, B.3, and B.4 will
result in limiting the fragmentation of both the target and the projectile. The density of cascade
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particles increases and the assumption that after a certain time tcasc, the cascade particles do not
interact is less justified. The final state interaction can give rise to the coalescence of nucleons
into composites.

A more complete presentation of the Gudima-Toneev cascade and comparisons with experi-
ments can be found in [Ton83].

B.2 Isabel cascade

The Isabel code [Yar79, Yar81] is a direct generalisation of the VEGAS calculations [Che69]
which aims to treat fairly accurately the multiple collision processes in nuclei, but disregards
the nucleon-nucleon correlations. It is based on concepts of relativistic classical mechanics, i.e.
the momenta and coordinates (trajectories) of particles are treated classically. Both target and
projectile are assumed initially to be cold Fermi gases in their respective potential wells. The
nucleon-nucleon cross-sections in the calculations are free nucleon-nucleon cross-sections. The
only quantum mechanical concept incorporated is the Pauli principle. The pions are produced
and absorbed via ∆ formation, decay, and capture N +N ⇀↽ ∆+N and ∆ ⇀↽ π+N (see Chap. 7).

The simulation process uses a ‘timelike basis’ Monte Carlo procedure [Che69]. This pro-
cedure follows the states of all the cascade particles as a function of time. One advantage of
using the timelike basis is the possibility of changing the global properties of the system as the
nucleus-nucleus interaction proceeds. The nuclear density distributions in both the projectile
and the target are approximated by a step-function distribution. The relative densities to the
folded-Yukawa-sharp-cutoff density distribution with the sharp cutoff radius Rs = 1.18A1/3 fm
(half density radius Rs = 1.18[1−0.85A−2/3 ]A1/3), and t = r0.1−r0.9=2.4 fm, r0.1 and r0.9 being
the radii at which the density drops to 0.1 and 0.9 times the central density (which is always
0.145 fm−3), respectively. Both the target and projectile particles reside in potential wells. The
momentum distribution of these nucleons is assumed to be that of a degenerate Fermi gas. The
depth of the potential well for protons and neutrons is the sum of the corresponding Fermi
energy and the separation energy.

All calculations are performed in the target frame. Effects of the Pauli principle are taken
into account for both the projectile and target. Cascade particle energies are not allowed to fall
below the Fermi energies in either the target or projectile systems. One considers interactions
between the Fermi sea particles or the projectile and the Fermi sea particles of the target, or
between the cascade particles (i.e. particles which have been lifted out of the Fermi sea) and
Fermi sea particles of either projectile or target. Interactions between particles in the same Fermi
sea are not allowed. In the present version of the program, one neglects the interaction between
cascade particles. The cascade particles in the region of overlap between the projectile and target
are followed until they leave the region (independent of their kinetic energy), whereas outside of
the overlap region, they are followed until they either leave the projectile and target volume, or
their energy falls below a given cutoff energy (the prescription of the cutoff energy is the same
as in Ref. [Che69]).
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As a cascade develops, the density in the participating Fermi seas is depleted. Since the
detailed nature of the density rearrangement is unknown, one has applied two extreme prescrip-
tions:

a. Fast rearrangement. After each collision with a target (projectile) partner, the
density distribution ρi of the ‘partner’ type (i denotes proton or neutron) in the
target (projectile) is instantaneously and uniformly reduced for the whole nucleus.
In addition, any given particle is not allowed to interact within a distance smaller
than ρ

−1/3
i from its last interaction.

b. Slow rearrangement. After each collision, a ‘hole’ of volume 1/ρi is punched in the
density distribution configuration space around the position of the interaction. No
more interactions are allowed in this hole volume. The holes may depend or not of
the isospin, i.e. one may apply them to protons and neutrons independently using
their proper densities, or make holes for all nucleons with a radius based on the total
nuclear density.

The residual excitation energies of the target and the projectile are the sums of the hole
(in the particle-hole sense) energies and the energies of the particles which have fallen below
the cutoff energy. The residual linear and angular momenta are calculated in a similar fashion.
The projectile velocity is kept constant during the collision, the recoil being calculated at the end.

B.3 Liège cascade

The main difference between the Liège and Isabel cascades is that the Cugnon procedure does
not follow the state of the ensemble of the cascade particles but the state of each cascade par-
ticle as a function of time, as it is done also in the Dubna cascade. This permits to take into
account in a total explicit way the Fermi motion of the nucleons and the collisions that it gen-
erates. Most of the details on the Cugnon cascade, or Liège INC model, are given in Ref. [Cug80].

In this thesis, we have used the hybrid code INC+percolation of Ref. [Cug89] including also a
recently improved parametrization of the nucleon-nucleon interaction cross-sections as described
in Ref. [Cug97, Cug97b]. This code is followed by an evaporation calculation [Dre62]. The model
includes pion and delta production as well as an isospin degree of freedom. This hybrid version
is the newest of the three INC codes that we present in this work.

At the beginning, nucleons inside each nucleus are randomly positioned in a sphere of radius
1.12A1/3 fm (where A is the nucleus mass) and in a momentum sphere of radius PF = 235
MeV/c. The Fermi motion of all nucleons is frozen up to its first collision. The impact param-
eter b of the collision is randomly chosen in a disk of radius equal to the sum of the radii of
the two nucleii. The calculation uses relativistic kinematics. Particles move along straight line
trajectories until two of them reach their minimum distance of approach, dmin. Wether they
collide or not is governed by a comparison of the total collision cross section with πd2

min. The
Pauli principle is applied to forbid final states which are already occupied. The blocking factor
relies on phase space occupation probabilities inside a reference volume centered around each
particle in the final state. This reference volume is the direct product of a sphere in ordinary
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space of 2 fm radius and a sphere in momentum space of 200 MeV/c radius. Soft collisions, i.e.,
with a c.m. energy smaller than 35 MeV, are suppressed. The potential energy of the nucleons in
the nuclei is neglected. The absence of a potential, avoiding a treatment of collisions for off mass
shell nucleons, is justified at high bombarding energies. At these high bombarding energies, the
potential energy will be restored in an approximate manner, as explained in the following.

In order to partly restore the effect of the potential well felt by nucleons inside a nucleus,
the procedure given by the Ref. [Mon93] is applied, a feature that can be of importance at
the relatively low bombarding energy. It has proved to be quite successful for the analysis of
a vast body of data in the 250-800 AMeV range. Since the origin of all colliding nucleons is
known (target or projectile), their energy, relative to their emitter, can be determined after any
nucleon-nucleon collision. It is compared to a value V. This ‘potential’ energy, 32 MeV, was
determined in a somewhat ad hoc manner in Ref. [Mon93], but it is close to the average (over
all the nucleons of a nucleus) energy needed for a nucleon to escape from the potential well.
Nucleons more energetic than V can ‘escape’, with an energy of V substracted. Otherwise they
‘reintegrate’ into their parent nucleus waiting for a possible new collision.

This procedure satisfactorily describes the kinetic energy of the free nucleons. It however
introduces a violation of energy conservation in the model calculation. This can be taken into
account, considering that the energy lost in this procedure is mainly recovered under the form
of the excitation energy of the clusters formed in the percolation. It is reasonable that this
extra excitation energy can be attributed to the nucleons that have been hit but that did not
have enough energy to escape their parent nucleus. The energy conservation is restored in the
following way. Let ∆E be the energy not conserved in this procedure. One then corrects the
excitation energy of a fragment f by a quantity δE given by (Ninf/Nintot)∆E where Nintot

is the total number of nucleons that are not able to escape in the whole system and Ninf the
number of nucleons that included in a fragment f which were not able to escape. This correction
is applied to fragments of charge greater than 6. This procedure restores energy conservation in
the model, it allows us to treat in a reasonable manner the potential energy effects while keeping
the simplicity of the cascade approach. Correcting the excitation energy rather than the kinetic
energy of the fragments is justified in some sense by the fact that the main momentum flow is
governed by collisions, accurately described by the cascade model.

INC to percolation

All the particles are followed in time, up to a stopping time tstop. Since colliding nuclei are
treated as a cloud of nucleons, fragments are not naturally defined at the stoppping time. A
percolation procedure is used to construct residual fragments.

In the version of Liège cascade for nucleon-nucleus collisions (where a static potential well
is introduced), the stopping time has been parametrized [Cug97b] as a function of target mass,
incident energy, and impact parameter using criteria based on the time evolution of various
variables with time. Namely, the excitation energy of the remnant (naturally defined by the nu-
cleons that are remaining in the volume of the potential well), the emission anisotropy, and the
saturation of the cumulative numbers of collisions or escaping particles. Changes of behaviour
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of these observables were observed at about the same time, so defining the stopping time tstop

rather consistently. In the nucleus-nucleus case, the stopping time is determined in a similar
manner and has been set to 40 fm/c [Dor01].

In Ref. [Cug89], the percolation is applied to the configuration at the late collision just be-
fore the stopping time. The percolation distance dcut is chosen to be 2 fm, a reasonable value
as regard to the average distance between nucleons in ordinary nuclear matter. Moreover one
considers the possibility of performing the percolation at a time tper later than tlast, the time at
which the latest collision occurs.

For small impact parameter, the configuration are rather homogeneous and close to a spher-
ical geometry. The collision process is almost over. In such conditions, there is an approximate
correlation between dcut and tper leading to roughly the same fragmentation pattern: an increase
of tper can be compensated by an increase of dcut, as explained in Ref. [Cug89, Mon93]. This
exactly holds for a self-similar radial flow, i.e., when the particles have a radial outward velocity
proportional to their distance from the center of the system.

For the very peripheral collisions, tlast is rather small, and, at this time, the quasiprojec-
tile and the quasitarget are almost touching each other, with perhaps one or two nucleons in
between. A straight application of percolation on such a configuration leads to a spurious ‘fu-
sionlike’ event. Since quasiprojectile, quasitarget, and nucleons in between have rather different
velocities in the longitudinal direction, there are no dcut−tper correlations for this case. Adopting
a tper larger than tlast propagates further the fragments and the nucleons and separates the two
big fragments from each other. One has to remember that nucleons inside the quasiprojectile
and the quasitarget have practically not interacted. The Fermi motion is thus frozen inside these
objects and they move as a whole.

For not too large impact parameters (midperipheral collisions), the situation is a little bit
different: there are still two large fragments, not too far away from each other, with nucleons
and perhaps one or two light clusters in between. Increasing tper to achieve a good separation
of the big clusters may dissociate the light ones. This can be circumvented by increasing dcut.

These considerations suggest that a compromise can be reached by an appropriate b-dependent
choice of tper and dcut. Similar considerations and choices are made in Ref. [Mon93]. One has
adopted tper = tlast + 0.75(tstop − tlast) and d2

cut varying linearly with the impact parameter
from 9 fm2 for central collisions to 18 fm2 for peripheral ones for the system C+Au at 1000
AMeV studied in this work. These values are significantly larger than those used for the sys-
tem Ar+Ni at 95 AMeV [Dor01]. The reason is that, st a time of 40 fm/c, the system at 1000
AMeV is more expanded and the percolation distances have to be increased. This distance has
been phenomenologically adjusted to reproduce the measured ratio of the fast proton production
measured in the present experiment [Vol02]. These adjustments allow to make vary slightly and
monotically with the impact parameter the mean position of the noninteracting nucleons of the
projectile, relative to the target position, at the percolation time. This permits to perform the
percolation in homogeneous conditions. This procedure can be interpreted as a compensation
required by percolation being performed in ordinary space only and not in phase space.
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Percolation generates free nucleons, light composite particles and excited fragments. The ex-
citation energy of the clusters can be evaluated by looking at the internal motion in their center
of mass frame. It is defined as the difference between the total energy of the nucleons inside a
cluster and the sum of the mass energy of the constituents. This excitation energy has to be
released by means of an afterburner. The evaporation code of Dresner [Dre62] has been chosen
for that purpose. It calculates the statistical decay of the fragments, following the Weisskopf
theory [Wei37], through light particle (n, p, d, t, 3He, 4He) emission. Angular momentum is
neglected. Level density parameters are taken from Ref. [Ign75]. For the deexcitation of light
fragments with mass number between 5 and 21, instead of the standard evaporation formula,
the code utilises the Fermi breakup [Fer50] model .

See Ref. [Dor01] for more complete informations on first tests of this new nucleus-nucleus
version of Liège Intra-Nuclear Cascade.



Appendix C

Moving Source Fit

In a canonical ensemble, the probability to find a particle at a certain energy is determined by
the state density, represented by the Boltzmann factor exp(-E/T) . Here, E is the kinetic energy
of a particle and T the temperature of the system. The corresponding energy spectra show the
classical Maxwell-Boltzmann distribution

f(E) =
1
C

√
E exp(−E

T
) (C.1)

where isotropic emission is assumed; C is a normalization factor.

Assuming, that a reaction system consists of one or several distinct sources, travelling with
different velocities in the laboratory system, the moving-source formalism is appropriate to
describe the energy spectra for a species of particles. For this reason, this appendix explains how
to combine Maxwell-Boltzmann distributions, taking into account the Coulomb repulsion of the
particles from the source, and later on generalizing this approach to a relativistic treatment.
The inclusion of a radial flow profile is done for the sake of completeness and for documentation
purposes, even if it is not part of this thesis.

C.1 Maxwell-Boltzmann distribution

In order to describe energy spectra of an experiment, we have to normalize Eq. C.1 in an
appropriate way. This will be done first by the normalization of the probability distribution f(E)∫

f(E)dEdΩ = 4π

∫ ∞

0
f(E)dE = 1

The integration of Eq. C.1 over all energies and over solid angle yields the normalization
constant C.

C = 4π
∫∞
0

√
E exp

(
−E

T

)
dE

= 4π
(

1
T

)−3/2
Γ(3/2)

= 4π
√

π
2 (T )3/2

= 2(πT )3/2

with the Gamma function Γ(3/2) = Γ(1/2 + 1) = 1/2Γ(1/2) = 1/2
√

π [Rot60]
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and hence

f(E) =
1

2(πT )3/2

√
E exp

(
−E

T

)
(C.2)

Expressed in terms of a double-differential cross-section, Eq. C.2 becomes

∂2σ

∂E ∂Ω
= σf(E) =

σ
√

E

2(πT )3/2
exp

(
−E

T

)

C.2 Radial flow

As a Schmankerl1, we extend the momentum spectra by the radial flow. For the sake of sim-
plicity, we assume a constant radial flow pF pointing away from the center of the source. It is
straight forward to implement also flow profiles which need simply one integration more. The
radial flow enters by substituting the momentum p by −→p −−→p F .

Therefore, we have

∂3σ
∂p3 = σ C 3

4πR3

∫
exp

(
−(−→p −−→p F )2

2mT

)
r2 dr dΩ

= σ C 1
4π

∫ 2π
0

∫ π
0 exp

(
−p2−p2

F +2ppF cos(ϑ)
2mT

)
sin (ϑ) dϑ dφ

= σ C 1
2 exp

(
−p2−p2

F
2mT

) ∫ π
0 exp

(
2ppF cos(ϑ)

2mT

)
sin (ϑ) dϑ

= σ C 1
2 exp

(
−p2−p2

F
2mT

) ∫ +1
−1 exp

(ppF z
mT

)
dz

= σ C 1
2 exp

(
−p2−p2

F
2mT

)
mT
ppF

[
exp

(ppF
mT

)− exp
(−ppF

mT

)]
= σ C exp

(
−p2−p2

F
2mT

)
mT
ppF

sinh
( ppF

mT

)
.

The integration variable dΩ describes here the integration over the spherical source with
radius R. The r integration is necessary in order to perform a volume integration (see below).
Normalization is performed by looking up an integration table (see [Gra65], 3.562(4)) and yields
C = (2πmT )3/2. It is the same normalization constant as that for the thermal distribution. That
is understandable, since the introduction of pF did only change the shape of the momentum
spectrum. In a Gedanken-experiment, we can imagine to sample a energy spectrum in a Monte-
Carlo simulation. If we add to each sampled entry of the energy spectrum the radial flow, this
entry is sorted into the spectrum at a different energy, but the integral of the spectrum does not
change. The Maxwell-Boltzmann distribution with radial flow yields therefore

∂3σ

∂p3
=

σ

(2πmT )3/2
exp(−p2 + p2

F

2mT
)

mT

ppF
sinh(

ppF

mT
).

1german or austrian for delicacy



Coulomb repulsion 131

C.3 Coulomb repulsion

Charged particles, emitted from a charged source, are objects of the mutual Coulomb repulsion.
Therefore, a cross-section in the center of mass of the source at an energy E has to be calculated
at the original energy E − VC , with the Coulomb energy VC , before the particle is accelerated
by the source. This is the appropriate description for the emission of a particle from the surface,
pushed by the charge within the source, or accelerated by the charge within a sphere around
the center of the system. For a volume breakup of the source, however, this approach is too
simple and a volume integration over all emission points of the source is needed. If we take as an
approximation a mean momentum vector pointing away from the center, one ends again with
the description of a thermal source with radial flow. To make it clear, the Coulomb repulsion
of a volume breakup of an source can be described in first order by the formulae given in the
radial flow section. In second order, it is exactly the formula for radial flow, if one incorporates
instead of a mean constant flow a flow profile like the Hubble flow [Rei97b]. In case of an surface
emission, we get

∂2σ

∂E ∂Ω
= σ

√
E − VC

2(πT )3/2
exp

(
−E − VC

T

)
(E ≥ VC)

C.4 A moving source in the laboratory

In a classical picture the (triple differential) cross section is Galilei invariant since d3p = d3p′,
that is

∂3σ

∂p3
=

∂3σ′

∂p′3

where the primed quantities are in the center of mass system and the unprimed quantities
in the laboratory system. The transition from momenta to energies is done by

∂3σ

∂p3
p m =

∂2σ

∂Ω ∂E
and

pm

p′m
=

√
E

E′

and

∂2σ

∂Ω ∂E
= σ

√
E

E′

√
E′ − VC

2(πT )3/2
exp

(
−E′ − VC

T

)

for a thermal source with Coulomb repulsion. The connection between the primed and un-
primed quantities is given by a boost of the particle in the center of mass system into the
laboratory by the (vector-)velocity of the source.
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C.5 Relativistic energies

We set for the sake of simplicity c = 1 and start again from

d3σ

dp3
= σ C exp(−E

T
)

with E =
√

p2 + m2 beeing now the total energy of the particle.

With dE/dp = p/E, we get

d3σ

dp3
=

d2σ

p2dp dΩ
=

d2σ

p2 E
p dE dΩ

=
1

pE

d2σ

dE dΩ

The relativistic invariant Maxwell-Boltzmann spectrum is represented by

d2σ

dE dΩ
= C σ pE exp(−E/T ),

with normalization C. It is defined as

C−1 = 4π

∫
pE exp(−E/T )dE

= 4π

∫ ∞

m

√
E2 − m2E exp(−E/T )dE

with 4π for the solid angle integration and with

d

dE

1
3

(
E2 − m2

) 3
2 =

1
3

3
2

(
E2 − m2

) 1
2 2E

=
√

E2 − m2E ,

the partial integration yields

C−1 = 4π

[
1
3

(
E2 − m2

) 3
2 exp(−E/T )

]∞
m

− 4π

∫ ∞

m

1
3

(
E2 − m2

) 3
2 −1

T
exp(−E/T )dE

=
4π

3T

∫ ∞

mc2

(
E2 − m2

) 3
2 exp(−E/T )dE.

Using an integration table (see [Gra65], 3.387-6), it gives

C−1 =
4π

3T

1√
π

(2mT )2 Γ
(

5
2

)
K2

(
m

T

)

=
4π

3T

1√
π

(2mT )2
√

π
3
4
K2

(
m

T

)

= 4π Tm2K2

(
m

T

)
.
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K2 is a modified Bessel function (also called Macdonald functions) and can be expressed by
(see [Gra65], 8.486-17)

K2

(
m

T

)
=

2T

m
K1

(
m

T

)
+ K0

(
m

T

)
.

This yields finally

C−1 = 4π Tm2
[

2T

m
K1

(
m

T

)
+ K0

(
m

T

)]

= 4π 2T 2m2K1

(
m

T

)
+ Tm2K0

(
m

T

)

= 4π m3

[
2
(

T

m

)2

K1

(
m

T

)
+

T

m
K0

(
m

T

)]
.

The K0,1 are usually expressed by polynomials

P0,1 =
√

m

T
exp(

m

T
)K0,1(

m

T
)

listed eg. in [Abr65], 9.8.6-8, which have a big numerical advantage. In the exponential of
the Boltzmann factor, the total energy E = Ekin + m is used. However, the large values of the
particle masses cause problems to evaluate it numerically. If we take out the mass, it is canceled
by the exponential in the normalization constant. Therefore, the final equation becomes

∂σ2

∂E ∂Ω
= σ

p (Ekin + m) exp(−Ekin
T )

4π (T m)3/2
(
2 T

mP1(m
T ) + P0(m

T )
) .

C.6 A relativistic moving source

Since the equation of the total energy as function of the momentum is different to the classical
case

d3σ

dp3
=

1
pE

d2σ

dE dΩ
,

and the differential invariant cross section

E
d3σ

dp3
= E′ d3σ′

dp′3

We get then

d2σ

dE dΩ
=

p

p′
d2σ′

dE′ dΩ′

and the moving source yields

∂σ2

∂E ∂Ω
= σ

p

p′
p′ (E′

kin + m) exp(−E′
kin
T )

4π (T m)3/2
(
2 T

mP1(m
T ) + P0(m

T )
)

with the primed quantities in the center of mass of the source. We get the primed quantities
by applying a Lorentz transformation, or Lorentz boost, into the rest frame of the source. For a
boost in arbitrary direction, see [Loh92], A 1.3.
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C.7 Relativistic radial flow

The relativistic radial flow is listed here only, since the original paper [Sie79] contains some
errors, which are corrected in subsequent papers [Lis95, Rei97b] and yields

∂σ2

∂E ∂Ω
= σ

p

p′
p′ (E′

kin + m) exp(−γ′
F E′

kin
T )

4π (T m)3/2
(
2 T

mP1(m
T ) + P0(m

T )
) [( T

E′ + γ′
F )

sinh α′

α′ − T

E′ cosh α′
]

with γF = 1/
√

1 − β2
F , the average flow velocity βF , and α=γF βF p/T . The primed quantities

are in the center of mass system. The normalization factor is the same as for the relativistic case
without radial flow for the same arguments given already in the classical case.

C.8 ‘Relativistic’ Coulomb repulsion

The Coulomb repulsion is treated as in the classical case, reducing the total energy by the
Coulomb repulsion and calculating momenta from this reduced quantity relativistically. Cer-
tainly, this is only a approximation and can be improved.



Appendix D

Proton kinetic energy spectra

The proton energy spectra for C+Au at 1000 AMeV are presented in this appendix for central
collisions (b/b0=0.0-0.2) to peripheral collisions (b/b0=0.8-1.0). They are compared to the Liège
cascade (see appendix B.3) coupled with two statistical models: the Dresner evaporation code and
the multifragmentation model SMM (see appendix A.1). The most peripheral collision spectra
are corrected from stray particle effects (see chapter 2). Some spectra exhibit non-exponential
shapes as at 4.5o < θlab < 7o, 10o < θlab < 14o, and 27o < θlab < 45o for peripheral collisions.
This effect is due to identification problems not yet solved.
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Figure D.1: The proton kinetic energy spectra for C+Au at 1000 AMeV are compared to the Liège
cascade model (high energies) coupled to the evaporation Dresner code (low energies) for b/b0=0.0-0.2
(central collisions).
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Figure D.2: The proton kinetic energy spectra for C+Au at 1000 AMeV are compared to the Liège
cascade model (high energies) coupled to the evaporation Dresner code (low energies) for b/b0=0.2-0.4
(almost central collisions).
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Figure D.3: The proton kinetic energy spectra for C+Au at 1000 AMeV are compared to the Liège
cascade model (high energies) coupled to the evaporation Dresner code (low energies) for b/b0=0.4-0.6
(semi-peripheral collisions).
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Figure D.4: The proton kinetic energy spectra for C+Au at 1000 AMeV are compared to the Liège
cascade model (high energies) coupled to the evaporation Dresner code (low energies) for b/b0=0.6-0.8
(almost peripheral collisions).
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Figure D.5: The proton kinetic energy spectra for C+Au at 1000 AMeV are compared to the Liège
cascade model (high energies) coupled to the evaporation Dresner code (low energies) for b/b0=0.8-1.0
(peripheral collisions).
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Figure D.6: The proton kinetic energy spectra for C+Au at 1000 AMeV are compared to the Liège
cascade model (high energies) coupled to SMM (low energies) for b/b0=0.0-0.2 (central collisions).
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Figure D.7: The proton kinetic energy spectra for C+Au at 1000 AMeV are compared to the Liège
cascade model (high energies) coupled to SMM (low energies) for b/b0=0.2-0.4 (almost central collisions).
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Figure D.8: The proton kinetic energy spectra for C+Au at 1000 AMeV are compared to the Liège cas-
cade model (high energies) coupled to SMM (low energies) for b/b0=0.4-0.6 (semi-peripheral collisions).
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Figure D.9: The proton kinetic energy spectra for C+Au at 1000 AMeV are compared to the Liège
cascade model (high energies) coupled to SMM (low energies) for b/b0=0.6-0.8 (almost peripheral colli-
sions).



145

E (MeV)

0 50 100 150 200 250 300

10
-1

10

10
3

10
5

10
7

10
9

10
11

10
13

10
15

10
16

d
2 σ

/d
E

.d
Ω

 (
m

b
/M

eV
.s

r)

Protons, C+Au at 1000 AMeV

b/b0=0.8-1.0
  Liege+SMM

  data

  Liege+SMM

  data

  Liege+SMM

  data

 

)
15

 (x 10o3-4.5

)
14

 (x 10o4.5-7

)
13

 (x 10o7-10

)
12

 (x 10o10-14

)
11

 (x 10o14-20

)
10

 (x 10o20-27

)
9

 (x 10o27-35

)
8

 (x 10o35-45

)
7

 (x 10o45-57

)
6

 (x 10o57-70

)
5

 (x 10o70-88

)
4

 (x 10o92-110

)
3

 (x 10o110-126

)
2

 (x 10o126-142

)
1

 (x 10o142-156

)
0

 (x 10o156-176

θ lab

Figure D.10: The proton kinetic energy spectra for C+Au at 1000 AMeV are compared to the Liège
cascade model (high energies) coupled to SMM (low energies) for b/b0=0.8-1.0 (peripheral collisions).
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[Par00] M. Pârlog et al., Preprint (2000)

[Pei89] G. Peilert et al., Phys. Rev. C 39(1989)1402

[Pei92] G. Peilert et al., Phys. Rev. C 46(1992)1457

[Pel97] D. Pelte et al. Z. Phys. A 357(1997)215

[Pha92] L. Phair et al., Nucl. Phys. A 548(1992)489

[Pla00] E. Plagnol et al., Phys. Rev. C 61(2000)014606

[Poc95] J. Pochodzalla et al., Phys. Rev. Lett. 75(1995)1040

[Poe96] D.N. Poenaru, Nuclear Decay Modes, J. Konopka and H. Stöcker, Fundamental
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[Sch78] W.U. Schröder et al., Phys. Rep. 45(1978)301

[Sch96] A. Schüttauf et al., Nucl. Phys. A 607(1996)457

[Sch96b] A. Schüttauf, PhD Thesis, University Frankfurt, 1996

[Sch94] O. Schwalb et al., Phys. lett. B 321(1994)20

[Sch93] C. Schwarz et al., Phys. Rev. C 48(1993)676

[Sch01] C. Schwarz et al., Nucl. Phys. A 681(2001)279c

[Sie79] P.J. Siemens and J.O. Rasmussen, Phys. Rev. Lett. 42(1979)880

[Sky59] T.H.R. Skyrme, Nucl. Phys. 9(1959)615

[Sor89] H. Sorge et al., Nucl. Phys. A 498(1989)567c

[Sri99] B.K. Srivastava et al., Phys. Rev. C 60(1999)064606
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Study of the 12C+197Au reaction at relativistic energies
with the INDRA 4π multidetector.

ABSTRACT: The INDRA@GSI experiment permits to explore the mechanisms of the reac-
tion 12C+197Au in normal kinematics by the use of the INDRA 4π multidetector and relativistic
12C beams. The target spectator source is determined for protons and light fragments, sepa-
rately from the early cascade source emitting light particles and a high energy source producing
fragments approximately in the center of mass. The proton kinetic energy spectra are compared
to combinations of the Liège IntraNuclear Cascade model and statistical models. The favoured
scenario associates a cascade process with a statistical multifragmentation process. The frag-
ment slope temperatures determined by a Maxwell-Boltzmann function combination emphasize
a dependence on incident energy, with the reaction centrality given by the charged particle mul-
tiplicity. The pions, for the first time detected in INDRA, and the fast protons emitted in the
early stage of the reaction present a correlation with the impact parameter but not with the
fragment production.

DOMAIN: Nuclear Physics
KEY WORDS: heavy ion collisions, INDRA multidetector, reaction mechanisms, proton and

fragment sources, pions, correlation fonctions

—————————————————————————————————————
Etude de la réaction 12C+197Au aux énergies relativistes

avec le multidétecteur 4π INDRA.

RESUME : L’expérience INDRA@GSI permet d’étudier les mécanismes de la réaction
12C+197Au en cinématique directe par l’utilisation du multidétecteur 4π INDRA et de faisceaux
de 12C aux énergies relativistes. La source du spectateur de la cible est déterminée pour les pro-
tons et les fragments légers, séparément de la source de cascade émettant des particules légères
et d’une source de haute énergie émettant des fragments approximativement dans le centre de
masse. Les spectres de protons en énergie cinétique sont comparés à des combinaisons du modèle
de Cascade IntraNucléaire de Liège avec des modèles statistiques. Le scénario privilégié associe
un processus de cascade avec une multifragmentation statistique. Les températures de pente
des fragments déterminées par une combinaison de fonctions de Maxwell-Boltzmann mettent en
évidence une dépendance en énergie de faisceau, la centralité de la réaction étant donnée par
la multiplicité de particules chargées. Les pions, détectés pour la première fois avec INDRA,
et les protons rapides présentent une corrélation avec le paramètre d’impact mais non avec la
production de fragments.

DISCIPLINE : Physique Nucléaire
MOTS-CLES : collisions d’ions lourds, multidétecteur INDRA, mécanismes de réaction,

sources de protons et de fragments, pions, fonctions de corrélations
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